Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Testbed for Determining the Filtering Capacities of COTS Adsorbents

2007-07-09
2007-01-3137
A lab-scale testbed for screening and characterizing the chemical specificity of commercial “off-the-shelf” (COTS) polymer adsorbents was built and tested. COTS polymer adsorbents are suitable candidates for future trace contaminant (TC) control technologies. Regenerable adsorbents could reduce overall TC control system mass and volume by minimizing the amounts of consumables to be resupplied and stored. However, the chemical specificity of these COTS adsorbents for non-methane volatile organic compounds (NMVOCs) (e.g., methanol, ethanol, dichloromethane, acetone, etc) commonly found in spacecraft is unknown. Furthermore, the effect of humidity on their filtering capacity is not well characterized. The testbed, composed of a humidifier, an incubator, and a gas generator, delivers NMVOC gas streams to conditioned sorbent tubes.
Technical Paper

Reduced Pressure Atmosphere Impacts on Life Support and Internal Thermal Systems

2006-07-17
2006-01-2247
Selecting the appropriate atmosphere for a spacecraft and mission is a complicated problem. NASA has previously used atmospheres from Earth normal composition and pressure to pure oxygen at low pressures. Future exploration missions will likely strike a compromise somewhere between the two, trying to balance operation impacts on EVA, safety concerns for flammability and health risks, life science and physiology questions, and other issues. Life support systems and internal thermal control systems are areas that will have to respond to changes in the atmospheric composition and pressure away from the Earth-like conditions currently used on the International Space Station. This paper examines life support and internal thermal control technologies currently in use or in development to find what impacts in design, efficiency and performance, or feasibility might be expected.
Technical Paper

The Automated Control and Monitoring of Advanced Life Support Systems

1996-07-01
961512
Advanced life support systems require computer controls which deliver a high degree of reliability and autonomy and meet life support criteria. Such control systems must allow crewmembers on long-term missions to perform their scientific and engineering duties while minimizing interactions with life support systems. Control systems must be the “brains” of life support systems providing air, water, edible biomass, and recycling services. They must establish and maintain life support components in an optimized manner, providing self-sufficient infrastructures independent of Earth-based resupply. The CELSS (Controlled Ecological Life Support System) Breadboard Project has implemented such a computerized component of a future mission. The Universal Networked Data Acquisition and Control Engine (UNDACE) is the software interface between humans and hardware controlling plant growth experiments.
Technical Paper

Development Status of Amine-based, Combined Humidity, CO2 and Trace Contaminant Control System for CEV

2006-07-17
2006-01-2192
Under a NASA-sponsored technology development project, a multi-disciplinary team consisting of industry, academia, and government organizations lead by Hamilton Sundstrand is developing an amine-based humidity and CO2 removal process and prototype equipment for Vision for Space Exploration (VSE) applications. Originally this project sought to research enhanced amine formulations and incorporate a trace contaminant control capability into the sorbent. In October 2005, NASA re-directed the project team to accelerate the delivery of hardware by approximately one year and emphasize deployment on board the Crew Exploration Vehicle (CEV) as the near-term developmental goal. Preliminary performance requirements were defined based on nominal and off-nominal conditions and the design effort was initiated using the baseline amine sorbent, SA9T.
X