Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development of a Prototype Water Pump for Future Space Suit Applications

2009-07-12
2009-01-2450
NASA's next generation of space suit systems will place new demands on the pump used to circulate cooling water through the life support system and the crew's liquid cooling garment. Long duration missions and frequent EVA require increased durability and reliability; limited resupply mass requirements demand compatibility with recycled water, and changing system design concepts demand increased tolerance for dissolved and free gas and the ability to operate over a broader range of flow rates and discharge pressure conditions. This paper describes the development of a positive displacement prototype pump to meet these needs. A gerotor based design has been adapted to meet pump performance, gas tolerance, and durability requirements while providing a small, lightweight pump assembly. This design has been detailed and implemented using materials selected to address anticipated water quality and mission needs as a prototype unit for testing in NASA laboratories.
Technical Paper

Requirements and Potential for Enhanced EVA Information Interfaces

2003-07-07
2003-01-2413
NASA has long recognized the advantages of providing improved information interfaces to EVA astronauts and has pursued this goal through a number of development programs over the past decade. None of these activities or parallel efforts in industry and academia has so far resulted in the development of an operational system to replace or augment the current extravehicular mobility unit (EMU) Display and Controls Module (DCM) display and cuff checklist. Recent advances in display, communications, and information processing technologies offer exciting new opportunities for EVA information interfaces that can better serve the needs of a variety of NASA missions. Hamilton Sundstrand Space Systems International (HSSSI) has been collaborating with Simon Fraser University and others on the NASA Haughton Mars Project and with researchers at the Massachusetts Institute of Technology (MIT), Boeing, and Symbol Technologies in investigating these possibilities.
Technical Paper

Quality Function Deployment for the Shoulder Section of the Space Suit

2005-07-11
2005-01-3017
Spacesuit shoulder mobility is critical in performing EVA tasks. In addition, risk of failure must be minimized and injuries during operations and training eliminated. The pressure suit design elements that control shoulder mobility interact strongly and in complex ways with many aspects of the pressure suit and system design and are constrained by anthropometric factors. To properly develop the problem statement for the shoulder section in a new suit design that is appropriate for a return to the Moon and eventual exploration of Mars, a Quality Function Deployment (QFD) is under development. QFD is a powerful and widely used method to define your customers, determine their needs, benchmark the competition, and define engineering parameters and targets, that when met, will lead to a successful product. Since many of the requirements for the next generation suit are unknown, the QFD will continually be updated.
X