Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Space Simulation in the Neutral Buoyancy Test Facility

1993-09-01
932554
Various methods have been used to simulate reduced gravity environments for space systems research and development. Neutral buoyancy has been the most universally used simulation of zero-g. This paper describes the facilities, personnel and experimental work that are associated with the Neutral Buoyancy Test Facility (NBTF) at NASA Ames Research Center (ARC). This facility provides a unique underwater environment for the researcher to simulate reduced gravity activities and evaluate the performance of space-related equipment. The NBTF's small size gives it several advantages over larger water facilities. First, a smaller crew ensures a lower overhead. Second, the facility is used for research purposes only, eliminating any scheduling conflicts with astronaut training. Lastly, the small volume of water allows the researcher to more easily vary the water temperature. This feature is ideal for investigations of astronaut thermal comfort and regulation.
Technical Paper

Development Status of a Low-Power CO2 Removal and Compression System for Closed-Loop Air Revitalization

2008-06-29
2008-01-2095
The “low power-CO2 removal (LPCOR) system” is an advanced air revitalization system that is under development at NASA Ames Research Center. The LPCOR utilizes the fundamental design features of the ‘four bed molecular sieve’ (4BMS) CO2 removal technology of the International Space Station (ISS). LPCOR improves power efficiency by replacing the desiccant beds of the 4BMS with a membrane dryer and a state-of-the-art, structured adsorbent device that collectively require 25% of the thermal energy required by the 4BMS desiccant beds for regeneration. Compared to the 4BMS technology, it has the added functionality to deliver pure, compressed CO2 for oxygen recovery. The CO2 removal and recovery functions are performed in a two-stage adsorption compressor. CO2 is removed from the cabin air and partially compressed in the first stage. The second stage performs further compression and delivers the compressed CO2 to a reduction unit such as a Sabatier reactor for oxygen recovery.
Technical Paper

Evaluation of Commercial Off-the-Shelf Ammonia Sorbents and Carbon Monoxide Oxidation Catalysts

2008-06-29
2008-01-2097
Designers of future space vehicles envision simplifying the Atmosphere Revitalization (AR) system by combining the functions of trace contaminant (TC) control and carbon dioxide removal into one swing-bed system. Flow rates and bed sizes of the TC and CO2 systems have historically been very different. There is uncertainty about the ability of trace contaminant sorbents to adsorb adequately in a high-flow or short bed length configurations, and to desorb adequately during short vacuum exposures. This paper describes preliminary results of a comparative experimental investigation into adsorbents for trace contaminant control. Ammonia sorbents and low temperature catalysts for CO oxidation are the foci. The data will be useful to designers of AR systems for Constellation. Plans for extended and repeated vacuum exposure of ammonia sorbents are also presented.
Technical Paper

Performance Characterization of a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization Based on Integrated Tests with Carbon Dioxide Removal and Reduction Assemblies

2006-07-17
2006-01-2126
CO2 removal, recovery and reduction are essential processes for a closed loop air revitalization system in a crewed spacecraft. Typically, a compressor is required to recover the low pressure CO2 that is being removed from the spacecraft in a swing bed adsorption system. This paper describes integrated tests of a Temperature-Swing Adsorption Compressor (TSAC) with high-fidelity systems for carbon dioxide removal and reduction assemblies (CDRA and Sabatier reactor). It also provides details of the TSAC operation at various CO2 loadings. The TSAC is a solid-state compressor that has the capability to remove CO2 from a low-pressure source, and subsequently store, compress, and deliver it at a higher pressure. TSAC utilizes the principle of temperature-swing adsorption compression and has no rapidly moving parts.
Technical Paper

Innovative Concepts for Planetary EVA Access

2007-07-09
2007-01-3245
This study introduces several new concepts for suited EVA astronaut ingress/egress (departure and return) from a pressurized planetary surface habitat, based on use of a rear-entry suit and a suit lock or suitport. We provide insight into key operational aspects and integration issues, as well as the results of a requirements analysis and risk assessment of the concepts. The risk assessment included hazard analysis, hazard mitigation techniques, failure mode assessment, and operational risk assessment. Also included are performance and mass estimates for the egress concepts, and concepts for integration of the egress concepts with potential planetary habitat designs.
Technical Paper

Development and Testing of a Microwave Powered Regenerable Air Purification Technology Demonstrator

2002-07-15
2002-01-2403
Dielectric heating via microwave irradiation of contaminant laden sorbents offers distinct advantages in comparison to conventional thermal regeneration techniques. High temperatures may be achieved very rapidly because electromagnetic energy is absorbed directly by the sorbent material. A Technology Demonstrator, incorporating efficient rectangular waveguide based sorbent cartridge designs and effective microwave transmission systems was designed, fabricated and tested. Importantly, the performance of the Molecular Sieve 13X Waveguide Cartridge for the removal of water vapor, the Molecular Sieve 5A Waveguide Cartridge for the removal of CO2, and the Activated Carbon Waveguide Cartridge for removal of volatile organics from air, were each validated by successive sorption/ microwave desorption cycles.
X