Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Steady-State System Mass Balance for the BIO-Plex

A steady-state system mass balance calculation was performed to investigate design issues regarding the storage and/or processing of solid waste. In the initial stages of BIO-Plex, only a certain percentage of the food requirement will be satisfied through crop growth. Since some food will be supplied to the system, an equivalent amount of waste will accumulate somewhere in the system. It is a system design choice as to where the mass should accumulate in the system. Here we consider two approaches. One is to let solid waste accumulate in order to reduce the amount of material processing that is needed. The second is to process all of the solid waste to reduce solid waste storage and then either resupply oxygen or add physical/chemical (P/C) processors to recover oxygen from the excess carbon dioxide and water that is produced by the solid waste processor.
Technical Paper

Novel Regenerable Incinerator Exhaust Purification and Trace Contaminant Control System Utilizing Humidity Swings

This paper offers a concept for a regenerable, low-power system for purifying exhaust from a solid waste processor. The innovations in the concept include the use of a closed-loop regeneration cycle for the adsorber, which prevents contaminants from reaching the breathable air before they are destroyed, and the use of a humidity-swing desorption cycle, which uses less power than a thermal desorption cycle and requires no venting of air and water to space vacuum or planetary atmosphere. The process would also serve well as a trace contaminant control system for the air in the closed environment. A systems-level design is presented that shows how both the exhaust and air purification tasks could be performed by one processor. Data measured with a fixed-bed apparatus demonstrate the effects of the humidity swing on regeneration of the adsorbent.
Technical Paper

Power Management in Regenerative Life Support Systems Using Market-Based Control

As a part of the systems modeling research at NASA Ames Research Center, the use of a market-based control strategy to actively manage power for a model of a regenerative life support system (LSS) is examined. Individual subsystem control agents determine power demands and develop bids to ‘buy’ or to ‘sell’ power. A higher level controller collects the bids and power requests from the individual agents, monitors overall power usage, and manages surges or spikes. The higher level controller conducts an ‘auction’ to set a trading price and then allocates power to qualified subsystems. The auction occurs every twelve minutes within the simulated LSS. This market-based power reallocation cannot come at the expense of life support function. Therefore, participation in the auction is restricted to those processes that meet certain tolerance constraints. These tolerances represent acceptable limits within which system processes can be operated.
Technical Paper

Practical Scheduling Considerations of Waste Heat Reuse for a Mars Mission Advanced Life Support System

This paper builds on a steady-state investigation of waste heat reuse in an Advanced Life Support System (ALSS) for a Mars mission with a low degree of crop growth. In past studies, such a system has been defined in terms of technology types, hot and cold stream identification and stream energy content. The maximum steady-state potential for power and cooling savings within the system was computed via the Pinch Method. In this paper, the next step is taken toward achieving a pragmatic estimate of costs and savings associated with waste heat reuse in terms of equivalent system mass (ESM). In this paper, the assumption of steady-state flows are discarded, and a proposed schedule is developed for activities that are of interest in terms of waste heat reuse. The advanced life support system for the Mars Dual Lander Transit Vehicle is the system of interest.