Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Online Project Information System (OPIS) Description, Annual Reporting Outcomes, and Resulting Improvements

The On-line Project Information System (OPIS) is the Exploration Life Support (ELS) mechanism for task data sharing and annual reporting. Fiscal year 2008 (FY08) was the first year in which ELS Principal Investigators (PI's) were required to complete an OPIS annual report. The reporting process consists of downloading a template that is customized to the task deliverable type(s), completing the report, and uploading the document to OPIS for review and approval. In addition to providing a general status and overview of OPIS features, this paper describes the user critiques and resulting system modifications of the first year of OPIS reporting efforts. Specifically, this paper discusses process communication and logistics issues, user interface ambiguity, report completion challenges, and the resultant or pending system improvements designed to circumvent such issues for the fiscal year 2009 reporting effort.
Technical Paper

NASA's On-line Project Information System (OPIS) Attributes and Implementation

The On-line Project Information System (OPIS) is a LAMP-based (Linux, Apache, MySQL, PHP) system being developed at NASA Ames Research Center to improve Agency information transfer and data availability, largely for improvement of system analysis and engineering. The tool will enable users to investigate NASA technology development efforts, connect with experts, and access technology development data. OPIS is currently being developed for NASA's Exploration Life Support (ELS) Project. Within OPIS, NASA ELS Managers assign projects to Principal Investigators (PI), track responsible individuals and institutions, and designate reporting assignments. Each PI populates a “Project Page” with a project overview, team member information, files, citations, and images. PI's may also delegate on-line report viewing and editing privileges to specific team members. Users can browse or search for project and member information.
Technical Paper

The Effect of Mission Location on Mission Costs and Equivalent System Mass

Equivalent System Mass (ESM) is used by the Advanced Life Support (ALS) community to quantify mission costs of technologies for space applications (Drysdale et al, 1999, Levri et al, 2000). Mass is used as a cost measure because the mass of an object determines propulsion (acceleration) cost (i.e. amount of fuel needed), and costs relating to propulsion dominate mission cost. Mission location drives mission cost because acceleration is typically required to initiate and complete a change in location. Total mission costs may be reduced by minimizing the mass of materials that must be propelled to each distinct location. In order to minimize fuel requirements for missions beyond low-Earth orbit (LEO), the hardware and astronauts may not all go to the same location. For example, on a Lunar or Mars mission, some of the hardware or astronauts may stay in orbit while the rest of the hardware and astronauts descend to the planetary surface.
Technical Paper

Requirements Development Issues for Advanced Life Support Systems: Solid Waste Management

Long duration missions pose substantial new challenges for solid waste management in Advanced Life Support (ALS) systems. These possibly include storing large volumes of waste material in a safe manner, rendering wastes stable or sterilized for extended periods of time, and/or processing wastes for recovery of vital resources. This is further complicated because future missions remain ill-defined with respect to waste stream quantity, composition and generation schedule. Without definitive knowledge of this information, development of mission requirements is hampered. Additionally, even if waste streams were well characterized, other operational and processing needs require clarification (e.g. resource recovery requirements and planetary protection constraints). Therefore, the development of solid waste management (SWM) subsystem requirements for long duration space missions is an inherently uncertain, complex and iterative process.
Technical Paper

Considerations in Selection of Solid Waste Management Approaches in Long-Duration Space Missions

Solid Waste Management (SWM) systems of current and previous space flight missions have employed relatively uncomplicated methods of waste collection, storage and return to Earth. NASA's long-term objectives, however, will likely include human-rated missions that are longer in both duration and distance, with little to no opportunity for re-supply. Such missions will likely exert increased demands upon all sub-systems, particularly the SWM system. In order to provide guidance to SWM Research and Technology Development (R&TD) efforts and overall system development, the establishment of appropriate SWM system requirements is necessary. Because future long duration missions are not yet fully defined, thorough mission-specific requirements have not yet been drafted.
Technical Paper

Practical Scheduling Considerations of Waste Heat Reuse for a Mars Mission Advanced Life Support System

This paper builds on a steady-state investigation of waste heat reuse in an Advanced Life Support System (ALSS) for a Mars mission with a low degree of crop growth. In past studies, such a system has been defined in terms of technology types, hot and cold stream identification and stream energy content. The maximum steady-state potential for power and cooling savings within the system was computed via the Pinch Method. In this paper, the next step is taken toward achieving a pragmatic estimate of costs and savings associated with waste heat reuse in terms of equivalent system mass (ESM). In this paper, the assumption of steady-state flows are discarded, and a proposed schedule is developed for activities that are of interest in terms of waste heat reuse. The advanced life support system for the Mars Dual Lander Transit Vehicle is the system of interest.
Technical Paper

System-Level Analysis of Food Moisture Content Requirements for the Mars Dual Lander Transit Mission

To ensure that adequate water resources are available during a mission, any net water loss from the habitat must be balanced with an equivalent amount of makeup water. For a Mars transit mission, the primary sources of makeup water will likely involve water contained in shipped tanks and in prepackaged food. As mission length increases, it becomes more cost effective to increase system water closure (recovery and generation) than to launch adequate amounts of contained water. This trend may encourage designers to specify increased water recovery in lieu of higher food moisture content. However, food palatability requirements will likely declare that prepackaged foods have a minimum hydration (averaged over all food types). The food hydration requirement may even increase with mission duration. However, availability requirements for specific emergency scenarios may declare that determined quantities of water be provided in tanks, rather than as moisture in food.
Technical Paper

Development of Decision Support Capability in ALS

The ALS Metric is the predominant tool for predicting the cost of ALS systems. Metric goals for the ALS Program are daunting, requiring a threefold increase in the ALS Metric by 2010. Compounding the problem is the slow rate new ALS technologies reach the maturity required for consideration in the ALS Metric and the slow rate at which new configurations are developed. This limits the search space and potentially gives the impression of a stalled research and development program. Without significant increases in the state of the art of ALS technology, the ALS goals involving the Metric may remain elusive. A paper previously presented at his meeting entitled, “Managing to the metric: An approach to optimizing life support costs.” A conclusion of that paper was that the largest contributors to the ALS Metric should be targeted by ALS researchers and management for maximum metric reductions.