Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Category A One-Engine-Inoperative Procedures and Pilot Aids for Multi-Engine Civil Rotorcraft

1996-10-01
965616
This paper summarizes the results to date of an on-going research program being conducted by NASA in conjunction with the FAA vertical flight program office. The goal of the program is to reduce pilot workload and increase safety for rotorcraft category A terminal area procedures. Two piloted simulations were conducted on the NASA Ames Vertical Motion Simulator to examine the benefits of optimal procedures, cockpit displays, and alternate cueing methods. Measures of performance, handling qualities ratings and pilot comments indicate that such enhancements can greatly assist a pilot in handling an engine failure in the terminal area.
Technical Paper

The General Purpose Work Station, A Spacious Microgravity Workbench

1992-07-01
921394
The General Purpose Work Station (GPWS) is a laboratory multi-use facility, as demonstrated during the Spacelab Life Sciences 1 (SLS-1) flight. The unit provided particulate containment under varying conditions, served as an effective work space for manipulating live animals, e.g., rats, served as a containment facility for fixatives, and was proposed for use to conduct in-flight maintenance during connector pin repair. The cabinet has a front door large enough to allow installation of a full-size microscope in-flight and is outfitted with a side window to allow delivery of items into the cabinet without exposure to the spacelab atmosphere. Additional support subsystems include inside cabinet mounting, surgical glove fine manipulations capability, and alternating or direct current power supply for experiment equipment, as will be demonstrated during Spacelab J.
Technical Paper

Assessment of Cognitive Abilities in Simulated Space Ascent Environments

2009-07-12
2009-01-2425
The cognitive abilities of some astronauts are affected during spaceflight. We investigated whether a simulated space flight ascent environment, including vibration and 3.8 Gx ascent forces, would result in cognitive deficits detectable by the WinSCAT test battery. Eleven participants were administered the computerized cognitive test battery, a workload rating questionnaire and a subjective state questionnaire before and after a combination of acceleration plus vibration conditions. The acceleration plus vibration exposure resulted in significant self-reports of physical discomfort but did not significantly affect cognitive test battery scores. We discuss ways in which a cognitive assessment tool could be made more sensitive to subtle cognitive changes relevant to astronaut performance.
Technical Paper

Integrated Health Monitoring and Fault Adaptive Control for an Unmanned Hexrotor Helicopter

2013-09-17
2013-01-2331
This paper presents a novel health monitoring and fault adaptive control architecture for an unmanned hexrotor helicopter. The technologies developed to achieve the described level of robust fault contingency management include; 1.) A Particle Swarm Optimization (PSO) routine for maximizing the “built-in” fault tolerance that the closed loop flight control system affords, 2.) A two-stage Kalman filter scheme for real-time identification of faults that are masked by control system compensation, and 3.) A reconfigurable control allocation method which compensates for large degradations of the six main motor/rotor assemblies. The fault adaptive control system presented herein has strong robustness against small faults without the need for controller reconfiguration, and strong tolerance of large faults through adaptive accommodation of the fault source and severity.
Journal Article

Operator Performance Evaluation of Fault Management Interfaces for Next-Generation Spacecraft

2008-06-29
2008-01-2039
In the cockpit of NASA's next generation spacecraft, most vehicle command will be performed via electronic interfaces instead of hard cockpit switches. Checklists will be also displayed and completed on electronic procedure viewers rather than on paper. Transitioning to electronic cockpit interfaces opens up opportunities for more automated assistance, including automated root-cause diagnosis capability. The paper reports an empirical study evaluating two potential concepts for fault management interfaces incorporating two different levels of automation. The operator performance benefits produced by automation were assessed. Also, some design recommendations for spacecraft fault management interfaces are discussed.
X