Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Test Techniques for STOVL Large-Scale Powered Models

Predicting and testing for hover performance, both in and out of ground effect, and transition performance, from jet- to wing-borne flight and back, for vertical/short takeoff and landing (V/STOL) configurations can be a difficult task. Large-scale testing of these configurations can provide for a better representation of the flow physics than small-scale testing. This paper will discuss some of the advantages in testing at large-scale and some test techniques and issues involved with testing large-scale STOVL models. The two premier test facilities for testing large- to full-scale STOVL configurations are the Outdoor Aerodynamic Research Facility (OARF) and the 80- by 120-Foot Wind Tunnel of the National Full-Scale Aerodynamics Complex (NFAC). Other items of discussion will include force and moment measurements, jet efflux decay, wall effects, tunnel flow breakdown, strut interference, and flow visualization options.
Technical Paper

Boundary-Layer Transition and Global Skin Friction Measurement with an Oil-Fringe Imaging Technique

A new oil-fringe imaging skin friction (FISF) technique to measure skin friction on wind tunnel models is presented. In the method used to demonstrate the technique, lines of oil are applied on surfaces that connect the intended sets of measurement points, and then a wind tunnel is run so that the oil thins and forms interference fringes that are spaced proportional to local skin friction. After a run the fringe spacings are imaged with a CCD-array digital camera and measured on a computer. Skin friction and transition measurements on a two-dimensional wing are presented and compared with computational predictions.
Technical Paper

Engineering a Visual System for Seeing Through Fog

We examine the requirements for on-board aircraft sensor systems that would allow pilots to “see through” poor weather, especially fog, and land and rollout aircraft under conditions that currently cause flight cancellations and airport closures. Three visual aspects of landing and rollout are distinguished: guidance, hazard detection and hazard recognition. The visual features which support the tasks are discussed. Three broad categories of sensor technology are examined: passive millimeter wave (PMMW), imaging radar, and passive infrared (IR). PMMW and imaging radar exhibit good weather penetration, but poor spatial and temporal resolution. Imaging radar exhibits good weather penetration, but typically relies on a flat-earth assumption which can lead to interpretive errors. PMMW systems have a narrow field of view. IR has poorer weather penetration but good spatial resolution.
Technical Paper

NASA's On-line Project Information System (OPIS) Attributes and Implementation

The On-line Project Information System (OPIS) is a LAMP-based (Linux, Apache, MySQL, PHP) system being developed at NASA Ames Research Center to improve Agency information transfer and data availability, largely for improvement of system analysis and engineering. The tool will enable users to investigate NASA technology development efforts, connect with experts, and access technology development data. OPIS is currently being developed for NASA's Exploration Life Support (ELS) Project. Within OPIS, NASA ELS Managers assign projects to Principal Investigators (PI), track responsible individuals and institutions, and designate reporting assignments. Each PI populates a “Project Page” with a project overview, team member information, files, citations, and images. PI's may also delegate on-line report viewing and editing privileges to specific team members. Users can browse or search for project and member information.
Technical Paper

Microphone Array Phased Processing System (MAPPS): Phased Array System for Acoustic Measurements in a Wind Tunnel

A processing system has been developed to meet increasing demands for detailed noise measurement of aircraft in wind tunnels. Phased arrays enable spatial and amplitude measurements of acoustic sources, including low signal-to-noise sources not measurable by conventional measurement techniques. The Microphone Array Phased Processing System (MAPPS) provides processing and visualization of acoustic array measurements made in wind tunnels. The system uses networked parallel computers to provide noise maps at selected frequencies in a near real-time testing environment. The system has been successfully used in two subsonic, hard-walled wind tunnels, the NASA Ames 7- by 10-Foot Wind Tunnel and the NASA Ames 12-Foot Wind Tunnel. Low level airframe noise that can not be measured with traditional techniques was measured in both tests.
Technical Paper

Component-based Control System for the Rotating-Disk Analytical System (R-DAS)

The Rotating Disk Analytical System (R-DAS) is an in-situ, bio-analytical technology, which utilizes a micro-fluidic disk with similar form factor as an audio compact disc to enhance and augment microgravity-based cellular and molecular biology research. The current micro-fluidic assay performs live cell/dead cell analysis using fluorescent microscopy. Image acquisition and analysis are performed for each of the selected microscope slide windows. All images are stored for later download and possible further post analysis. The flight version of the R-DAS will occupy a double mid-deck shuttle locker or one quarter of an ISS rack. The control system for the R-DAS consists of a set of interactive software components. These components interact with one another to control disk rotation, vertical and horizontal stage motion, sample incubation, image acquisition and analysis, and human interface.
Technical Paper

An Extensible Information Grid for Risk Management

This paper describes recent work on developing an extensible information grid for risk management at NASA — a RISK INFORMATION GRID. This grid is being developed by integrating information grid technology with risk management processes for a variety of risk related applications. To date, RISK GRID applications are being developed for three main NASA processes: risk management — a closed-loop iterative process for explicit risk management, program/project management — a proactive process that includes risk management, and mishap management — a feedback loop for learning from historical risks that ‘escaped’ other processes. This is enabled through an architecture involving an extensible database, structuring information with XML, ‘schema-less’ mapping of XML, and secure server-mediated communication using standard protocols.