Refine Your Search

Topic

Author

Search Results

Technical Paper

Assessment of the Vapor Phase Catalytic Ammonia Removal (VPCAR) Technology at the MSFC ECLS Test Facility

2007-07-09
2007-01-3036
The Vapor Phase Catalytic Ammonia Removal (VPCAR) technology has been previously discussed as a viable option for the Exploration Water Recovery System. This technology integrates a phase change process with catalytic oxidation in the vapor phase to produce potable water from exploration mission wastewaters. A developmental prototype VPCAR was designed, built and tested under funding provided by a National Research Announcement (NRA) project. The core technology, a Wiped Film Rotating Device (WFRD) was provided by Water Reuse Technologies under the NRA, whereas Hamilton Sundstrand Space Systems International performed the hardware integration and acceptance test of the system. Personnel at the Ames Research Center performed initial systems test of the VPCAR using ersatz solutions. To assess the viability of this hardware for Exploration Life Support (ELS) applications, the hardware has been modified and tested at the MSFC ECLS Test Facility.
Technical Paper

Idealized Modeling and Analysis of the Shuttle Orbiter Wing Leading Edge Impact Data

2007-09-17
2007-01-3882
Some selected segments of the ascent and the on-orbit data from the Space Shuttle flight, STS114, as well as some selected laboratory test article data have been analyzed using wavelets, power spectrum and autocorrelation function. Additionally, a simple approximate noise test was performed on these data segments to confirm the presence or absence of white noise behavior in the data. This study was initially directed at characterizing the on-orbit background against which a signature due to an impact during on-orbit operation could be identified. The laboratory data analyzed here mimic low velocity impact that the Orbiter may be subjected to during the very initial stages of ascent.
Technical Paper

Integrated Use of Data Mining and Statistical Analysis Methods to Analyze Air Traffic Delays

2007-09-17
2007-01-3836
Linear regression is the primary data analysis method used in the development of air traffic delay models. When the data being studied does indeed have an underlying linear model, this approach would produce the best-fitting model as expected. However, it has been argued by ATM researchers [Wieland2005, Evans2004] that the underlying delay models are primarily non-linear. Furthermore, the delays being modeled often depend not only on the observable independent variables being studied but also on other variables not being considered. The traditional regression approach alone may not be best suited to study these type of problems. In this paper, we propose an alternate methodology based on partitioning the data using statistical and decision tree learning methods. We then show the utility of this model in a variety of different ATM modeling problems.
Technical Paper

Mass Transport in a Spaceflight Plant Growth Chamber

1998-07-13
981553
The Plant Generic BioProcessing Apparatus (PGBA), a plant growth facility developed for commercial space biotechnology research, has flown successfully on 3 spaceflight missions for 4, 10 and 16 days. The environmental control systems of this plant growth chamber (28 liter/0.075 m2) provide atmospheric, thermal, and humidity control, as well as lighting and nutrient supply. Typical performance profiles of water transpiration and dehumidification, carbon dioxide absorption (photosynthesis) and respiration rates in the PGBA unit (on orbit and ground) are presented. Data were collected on single and mixed crops. Design options and considerations for the different sub-systems are compared with those of similar hardware.
Technical Paper

Advanced Development of the Direct Osmotic Concentration System

2008-06-29
2008-01-2145
Direct osmotic concentration (DOC) is an integrated membrane treatment process designed for the reclamation of spacecraft wastewater. The system includes forward osmosis (FO), membrane evaporation, reverse osmosis (RO) and an aqueous phase catalytic oxidation (APCO) post-treatment unit. This document describes progress in the third year of a four year project to advance hardware maturity of this technology to a level appropriate for human rated testing. The current status of construction and testing of the final deliverable is covered and preliminary calculations of equivalent system mass are funished.
Technical Paper

Supporting Constellation Mission Training from Crew to Controllers

2008-06-29
2008-01-2106
Training to operate and manage Constellation vehicles, which include a crewed spacecraft and the lunar lander, is an essential part of the Constellation program. This paper discusses the on-going preparations for a Constellation Training Facility (CxTF). CxTF will be compromised of training simulators that will be used, in part, to prepare crew and flight controllers for vehicle operations. Current training simulators are reviewed to identify and outline key CxTF elements, i.e., part-task and full-task trainers. These trainers are further discussed within the context of the Constellation missions.
Technical Paper

Development Status of a Low-Power CO2 Removal and Compression System for Closed-Loop Air Revitalization

2008-06-29
2008-01-2095
The “low power-CO2 removal (LPCOR) system” is an advanced air revitalization system that is under development at NASA Ames Research Center. The LPCOR utilizes the fundamental design features of the ‘four bed molecular sieve’ (4BMS) CO2 removal technology of the International Space Station (ISS). LPCOR improves power efficiency by replacing the desiccant beds of the 4BMS with a membrane dryer and a state-of-the-art, structured adsorbent device that collectively require 25% of the thermal energy required by the 4BMS desiccant beds for regeneration. Compared to the 4BMS technology, it has the added functionality to deliver pure, compressed CO2 for oxygen recovery. The CO2 removal and recovery functions are performed in a two-stage adsorption compressor. CO2 is removed from the cabin air and partially compressed in the first stage. The second stage performs further compression and delivers the compressed CO2 to a reduction unit such as a Sabatier reactor for oxygen recovery.
Technical Paper

Mentoring SFRM: A New Approach to International Space Station Flight Controller Training

2009-07-12
2009-01-2447
The Mission Operations Directorate (MOD) of the Johnson Space Center is responsible for providing continuous operations support for the International Space Station (ISS). Operations support requires flight controllers who are skilled in team performance as well as the technical operations of the ISS. ISS flight controller certification has evolved to include a balanced focus on the development of team performance and technical expertise. The latest challenge the ISS team faces is how to certify an ISS flight controller to the required level of effectiveness in one year. Space Flight Resource Management (SFRM) training, a NASA adapted variant of Crew Resource Management (CRM), is expanding the role of senior flight controllers as mentors to help meet that challenge. This paper explains our mentoring approach and discusses its effectiveness and future applicability in promoting SFRM/CRM skills.
Technical Paper

Online Project Information System (OPIS) Description, Annual Reporting Outcomes, and Resulting Improvements

2009-07-12
2009-01-2513
The On-line Project Information System (OPIS) is the Exploration Life Support (ELS) mechanism for task data sharing and annual reporting. Fiscal year 2008 (FY08) was the first year in which ELS Principal Investigators (PI's) were required to complete an OPIS annual report. The reporting process consists of downloading a template that is customized to the task deliverable type(s), completing the report, and uploading the document to OPIS for review and approval. In addition to providing a general status and overview of OPIS features, this paper describes the user critiques and resulting system modifications of the first year of OPIS reporting efforts. Specifically, this paper discusses process communication and logistics issues, user interface ambiguity, report completion challenges, and the resultant or pending system improvements designed to circumvent such issues for the fiscal year 2009 reporting effort.
Technical Paper

Training Pilots for In-flight Icing: Cognitive Foundations for Effective Learning and Operational Application

2003-06-16
2003-01-2141
Aviation training has remained largely untouched by decades of development in cognitive science. In aviation, people must be trained to perform complicated tasks and make good operational decisions in complex dynamic environments. However, traditional approaches to professional aviation training are not well designed to accomplish this goal. Aviation training has been based mainly on relatively rigid classroom teaching of factual information followed by on-the-job mentoring. This approach tends to compartmentalize knowledge. It is not optimal for teaching operational decision-making, and it is costly in time and personnel. The effectiveness of training can be enhanced by designing programs that support the psychological processes involved in learning, retention, retrieval, and application. By building programs that are informed by current work in cognitive science and that utilize modern technological advances, efficient training programs can be created.
Technical Paper

An Extensible Information Grid for Risk Management

2003-09-08
2003-01-3067
This paper describes recent work on developing an extensible information grid for risk management at NASA — a RISK INFORMATION GRID. This grid is being developed by integrating information grid technology with risk management processes for a variety of risk related applications. To date, RISK GRID applications are being developed for three main NASA processes: risk management — a closed-loop iterative process for explicit risk management, program/project management — a proactive process that includes risk management, and mishap management — a feedback loop for learning from historical risks that ‘escaped’ other processes. This is enabled through an architecture involving an extensible database, structuring information with XML, ‘schema-less’ mapping of XML, and secure server-mediated communication using standard protocols.
Technical Paper

Aviation Data Integration System

2003-09-08
2003-01-3009
A number of airlines have FOQA programs that analyze archived flight data. Although this analysis process is extremely useful for assessing airline concerns in the areas of aviation safety, operations, training, and maintenance, looking at flight data in isolation does not always provide the context necessary to support a comprehensive analysis. To improve the analysis process, the Aviation Data Integration Project (ADIP) has been developing techniques for integrating flight data with auxiliary sources of relevant aviation data. ADIP has developed an aviation data integration system (ADIS) comprised of a repository and associated integration middleware that provides rapid and secure access to various data sources, including weather data, airport operating condition (ATIS) reports, radar data, runway visual range data, and navigational charts.
Technical Paper

The Effect of Mission Location on Mission Costs and Equivalent System Mass

2003-07-07
2003-01-2633
Equivalent System Mass (ESM) is used by the Advanced Life Support (ALS) community to quantify mission costs of technologies for space applications (Drysdale et al, 1999, Levri et al, 2000). Mass is used as a cost measure because the mass of an object determines propulsion (acceleration) cost (i.e. amount of fuel needed), and costs relating to propulsion dominate mission cost. Mission location drives mission cost because acceleration is typically required to initiate and complete a change in location. Total mission costs may be reduced by minimizing the mass of materials that must be propelled to each distinct location. In order to minimize fuel requirements for missions beyond low-Earth orbit (LEO), the hardware and astronauts may not all go to the same location. For example, on a Lunar or Mars mission, some of the hardware or astronauts may stay in orbit while the rest of the hardware and astronauts descend to the planetary surface.
Technical Paper

Space Life Support from the Cellular Perspective

2001-07-09
2001-01-2229
Determining the fundamental role of gravity in vital biological systems in space is one of six science and research areas that provides the philosophical underpinning for why NASA exists. The study of cells, tissues, and microorganisms in a spaceflight environment holds the promise of answering multiple intriguing questions about how gravity affects living systems. To enable these studies, specimens must be maintained in an environment similar to that used in a laboratory. Cell culture studies under normal laboratory conditions involve maintaining a highly specialized environment with the necessary temperature, humidity control, nutrient, and gas exchange conditions. These same cell life support conditions must be provided by the International Space Station (ISS) Cell Culture Unit (CCU) in the unique environment of space. The CCU is a perfusion-based system that must function in microgravity, at unit gravity (1g) on earth, and from 0.1g up to 2g aboard the ISS centrifuge rotor.
Technical Paper

Airport Remote Tower Sensor Systems

2001-09-11
2001-01-2651
Remote Tower Sensor Systems are proof-of-concept prototypes being developed by NASA/Ames Research Center (NASA/ARC) with collaboration with the FAA and NOAA. RTSS began with the deployment of an Airport Approach Zone Camera System that includes real-time weather observations at San Francisco International Airport. The goal of this research is to develop, deploy, and demonstrate remotely operated cameras and sensors at several major airport hubs and un-towered airports. RTSS can provide real-time weather observations of airport approach zone. RTSS will integrate and test airport sensor packages that will allow remote access to real-time airport conditions and aircraft status.
Technical Paper

Considerations in the Development of Habitats for the Support of Live Rodents on the International Space Station

2001-07-09
2001-01-2228
The animal habitat under development for the International Space Station (ISS) provides a unique opportunity for the physiological and biological science community to perform controlled experiments in microgravity on rats and mice. This paper discusses the complexities that arise in developing a new animal habitat to be flown aboard the ISS. Such development is incremental and moves forward by employing the past successes, learning from experienced shortcomings, and utilizing the latest technologies. The standard vivarium cage on the ground can be a very simple construction, however the habitat required for rodents in microgravity on the ISS is extremely complex. This discussion presents an overview of the system requirements and focuses on the unique scientific and engineering considerations in the development of the controlled animal habitat parameters. In addition, the challenges to development, specific science, animal welfare, and engineering issues are covered.
Technical Paper

A Simple Project Process Model for Estimating and Controlling Cost and Schedule

2006-07-17
2006-01-2189
This work presents a simple and useful project process model. The project model directly shows how a few basic parameters determine project duration and cost and how changes in these parameters can improve them. Project cost and duration can be traded-off by adjusting the work rate and staffing level. A project's duration and cost can be computed on the back of an envelope, with an engineering calculator, or in a computer spreadsheet. The project model can be simulated dynamically for further insight. The project model shows how and why projects can greatly exceed their expected duration and cost. Delays and rework requirements may create work feedback loops that increase cost and schedule in non-proportional and non-intuitive ways.
Technical Paper

The CELSS Antarctic Analog Project: A Validation of CELSS Methodologies at the South Pole Station

1993-07-01
932245
The CELSS Antarctic Analog Project (CAAP) is a joint NSF and NASA project tor the development, deployment and operation of CELSS technologies at the Amundsen-Scott South Pole Station. CAAP is implemented through the joint NSF/NASA Antarctic Space Analog Program (ASAP), initiated to support the pursuit of future NASA missions and to promote the transfer of space technologies to the NSF. As a joint endeavor, the CAAP represents an example of a working dual agency cooperative project. NASA goals are operational testing of CELSS technologies and the conduct of scientific study to facilitate technology selection, system design and methods development required for the operation of a CELSS. Although not fully closed, food production, water purification, and waste recycle and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, and minimize environmental impacts associated with human presence on the polar plateau.
Technical Paper

Development of Experiment Kits for Processing Biological Samples In-Flight on SLS-2

1994-06-01
941288
The Spacelab Life Sciences-2 (SLS-2) mission provided scientists with the unique opportunity of obtaining inflight rodent tissue and blood samples during a 14-day mission flown in October, 1993. In order to successfully obtain these samples, Ames Research Center's Space Life Sciences Payloads Office has developed an innovative, modular approach to packaging the instruments used to obtain and preserve the inflight tissue and blood samples associated with the hematology experiments on SLS-2. The design approach organized the multitude of instruments into 12 different 5x6x1 inch kits which were each used to accomplish a particular experiment functional objective on any given day during the mission. The twelve basic kits included blood processing, isotope and erythropoietin injection, body mass measurement, and microscope slides.
Technical Paper

Microgravity Flight - Accommodating Non-Human Primates

1994-06-01
941287
Spacelab Life Sciences-3 (SLS-3) was scheduled to be the first United States man-tended microgravity flight containing Rhesus monkeys. The goal of this flight as in the five untended Russian COSMOS Bion flights and an earlier American Biosatellite flight, was to understand the biomedical and biological effects of a microgravity environment using the non-human primate as human surrogate. The SLS-3/Rhesus Project and COSMOS Primate-BIOS flights all utilized the rhesus monkey, Macaca mulatta. The ultimate objective of all flights with an animal surrogate has been to evaluate and understand biological mechanisms at both the system and cellular level, thus enabling rational effective countermeasures for future long duration human activity under microgravity conditions and enabling technical application to correction of common human physiological problems within earth's gravity, e.g., muscle strength and reloading, osteoporosis, immune deficiency diseases.
X