Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Journal Article

Modeling Weather Impact on Airport Arrival Miles-in-Trail Restrictions

2013-09-17
2013-01-2301
When the demand for either a region of airspace or an airport approaches or exceeds the available capacity, miles-in-trail (MIT) restrictions are the most frequently issued traffic management initiatives (TMIs) that are used to mitigate these imbalances. Miles-in-trail operations require aircraft in a traffic stream to meet a specific inter-aircraft separation in exchange for maintaining a safe and orderly flow within the stream. This stream of aircraft can be departing an airport, over a common fix, through a sector, on a specific route or arriving at an airport. This study begins by providing a high-level overview of the distribution and causes of arrival MIT restrictions for the top ten airports in the United States. This is followed by an in-depth analysis of the frequency, duration and cause of MIT restrictions impacting the Hartsfield-Jackson Atlanta International Airport (ATL) from 2009 through 2011.
Journal Article

Modeling Weather Impact on Ground Delay Programs

2011-10-18
2011-01-2680
Scheduled arriving aircraft demand may exceed airport arrival capacity when there is abnormal weather at an airport. In such situations, Federal Aviation Administration (FAA) institutes ground-delay programs (GDP) to delay flights before they depart from their originating airports. Efficient GDP planning depends on the accuracy of prediction of airport capacity and demand in the presence of uncertainties in weather forecast. This paper presents a study of the impact of dynamic airport surface weather on GDPs. Using the National Traffic Management Log, effect of weather conditions on the characteristics of GDP events at selected busy airports is investigated. Two machine learning methods are used to generate models that map the airport operational conditions and weather information to issued GDP parameters and results of validation tests are described.
Technical Paper

Mass Transport in a Spaceflight Plant Growth Chamber

1998-07-13
981553
The Plant Generic BioProcessing Apparatus (PGBA), a plant growth facility developed for commercial space biotechnology research, has flown successfully on 3 spaceflight missions for 4, 10 and 16 days. The environmental control systems of this plant growth chamber (28 liter/0.075 m2) provide atmospheric, thermal, and humidity control, as well as lighting and nutrient supply. Typical performance profiles of water transpiration and dehumidification, carbon dioxide absorption (photosynthesis) and respiration rates in the PGBA unit (on orbit and ground) are presented. Data were collected on single and mixed crops. Design options and considerations for the different sub-systems are compared with those of similar hardware.
Technical Paper

Results and Analysis from Reduced Gravity Experiments of the Flexible Membrane Commode Apparatus

2009-07-12
2009-01-2344
Two separate experimental rigs used in tests on NASA and Zero-G Corporation aircrafts flying low-gravity trajectories, and in the NASA 2.2 Second Drop Tower have been developed to test the functioning of the Flexible Membrane Commode (FMC) concept under reduced gravity conditions. The first rig incorporates the flexible, optically opaque membrane bag and the second rig incorporates a transparent chamber with a funnel assembly for evacuation that approximates the size of the membrane bag. Different waste dispensers have been used including a caulking gun and flexible hose assembly, and an injection syringe. Waste separation mechanisms include a pair of wire cutters, an iris mechanism, as well as discrete slug injection. The experimental work is described in a companion paper. This paper focuses on the obtained results and analysis of the data.
Technical Paper

Aviation Data Integration System

2003-09-08
2003-01-3009
A number of airlines have FOQA programs that analyze archived flight data. Although this analysis process is extremely useful for assessing airline concerns in the areas of aviation safety, operations, training, and maintenance, looking at flight data in isolation does not always provide the context necessary to support a comprehensive analysis. To improve the analysis process, the Aviation Data Integration Project (ADIP) has been developing techniques for integrating flight data with auxiliary sources of relevant aviation data. ADIP has developed an aviation data integration system (ADIS) comprised of a repository and associated integration middleware that provides rapid and secure access to various data sources, including weather data, airport operating condition (ATIS) reports, radar data, runway visual range data, and navigational charts.
Technical Paper

Airport Remote Tower Sensor Systems

2001-09-11
2001-01-2651
Remote Tower Sensor Systems are proof-of-concept prototypes being developed by NASA/Ames Research Center (NASA/ARC) with collaboration with the FAA and NOAA. RTSS began with the deployment of an Airport Approach Zone Camera System that includes real-time weather observations at San Francisco International Airport. The goal of this research is to develop, deploy, and demonstrate remotely operated cameras and sensors at several major airport hubs and un-towered airports. RTSS can provide real-time weather observations of airport approach zone. RTSS will integrate and test airport sensor packages that will allow remote access to real-time airport conditions and aircraft status.
Technical Paper

Secure Large-Scale Airport Simulations Using Distributed Computational Resources

2001-09-11
2001-01-2650
To fully conduct research that will support the far-term concepts, technologies and methods required to improve the safety of Air Transportation a simulation environment of the requisite degree of fidelity must first be in place. The Virtual National Airspace Simulation (VNAS) will provide the underlying infrastructure necessary for such a simulation system. Aerospace-specific knowledge management services such as intelligent data-integration middleware will support the management of information associated with this complex and critically important operational environment. This simulation environment, in conjunction with a distributed network of super-computers, and high-speed network connections to aircraft, and to Federal Aviation Administration (FAA), airline and other data-sources will provide the capability to continuously monitor and measure operational performance against expected performance.
Technical Paper

Engineering a Visual System for Seeing Through Fog

1992-07-01
921130
We examine the requirements for on-board aircraft sensor systems that would allow pilots to “see through” poor weather, especially fog, and land and rollout aircraft under conditions that currently cause flight cancellations and airport closures. Three visual aspects of landing and rollout are distinguished: guidance, hazard detection and hazard recognition. The visual features which support the tasks are discussed. Three broad categories of sensor technology are examined: passive millimeter wave (PMMW), imaging radar, and passive infrared (IR). PMMW and imaging radar exhibit good weather penetration, but poor spatial and temporal resolution. Imaging radar exhibits good weather penetration, but typically relies on a flat-earth assumption which can lead to interpretive errors. PMMW systems have a narrow field of view. IR has poorer weather penetration but good spatial resolution.
Technical Paper

Development of an In-Flight Refill Unit for Replenishing Research Animal Drinking Water

1994-06-01
941283
The Spacelab Life Sciences 2 (SLS-2) mission became NASA's longest duration Shuttle mission, lasting fourteen days, when Columbia landed on November 1, 1993. Located within the Spacelab were a total of 48 laboratory rats which were housed in two Research Animal Holding Facilities (RAHFs) developed by the Space Life Sciences Payloads Office (SLSPO) at Ames Research Center. In order to properly maintain the health and well-being of these important research animals, sufficient quantities of food and water had to be available for the duration of the mission. An Inflight Refill Unit was developed by the SLSPO to replenish the animals' drinking water inflight using the Shuttle potable water system in the middeck galley as the source of additional water. The Inflight Refill Unit consists of two major subsystems, a Fluid Pumping Unit (FPU) and a Collapsible Water Reservoir (CWR).
Technical Paper

Direct-Interface Fusible Heat Sink Performance Tests

1994-06-01
941384
A high fidelity, direct-interface, fusible heat sink for cooling astronauts during extravehicular activity was constructed and tested. The design includes special connectors that allow the coolant loop to be directly connected to the fusible material, in this case water. Aspects tested were start-up characteristics, cooling rate, and performance during simulated heat loads. A simplified math model was used to predict the effect of increasing the effective thermal conductivity on heat sink freezing rate. An experiment was designed to measure the effective thermal conductivity of a water/Aluminum foam system, and full gravity tests were conducted to compare the freezing rates of water and water/foam systems. This paper discusses the results of these efforts.
Technical Paper

Summary of NASA's Extreme Short Take-Off and Landing (ESTOL) Vehicle Sector Activities

2005-10-03
2005-01-3145
NASA is exploring a research activity to identify the technologies that will enable an Extreme Short Take-Off and Landing (ESTOL) aircraft. ESTOL aircraft have the potential to offer a viable solution to airport congestion, delay, capacity, and community noise concerns. This can be achieved by efficiently operating in the underutilized or unused airport ground and airspace infrastructure, while operating simultaneously, but not interfering with, conventional air traffic takeoffs and landings. Concurrently, the Air Force is exploring ESTOL vehicle solutions in the same general performance class as the NASA ESTOL vehicle to meet a number of Advanced Air Mobility missions. The capability goals of both the military and civil vehicles suggests synergistic technology development benefits. This paper presents a summary of the activities being supported by the NASA ESTOL Vehicle Sector.
Technical Paper

Propulsion System Sizing For Powered Lift And Mechanical Flap Quiet Aircraft

1974-02-01
740455
Propulsion system sizing for mechanical flap and externally blown flap aircraft is demonstrated. Included in this study is the effect of various levels of noise suppression on the aircraft final design characteristics. Both aircraft are sized to operate from a 3000 ft runway and perform the same mission. For each aircraft concept, propulsion system sizing is demonstrated for two different engine cycles-one having a fan pressure ratio of 1.5 and a bypass ratio of 9 and the other having a fan pressure ratio of 1.25 and a bypass ratio of 17.8. The results presented include the required thrust to weight ratio, wing loading, resulting gross weight and direct operating costs as functions of the engine noise level for each combination of engine cycle and aircraft concept.
Technical Paper

The STOL Performance of a Two-Engine, USB Powered-Lift Aircraft with Cross-Shafted Fans

1985-12-01
851839
The short takeoff and landing capabilities that characterize the performance of powered-lift aircraft are dependent on engine thrust and are, therefore, severely affected by loss of an engine. This paper shows that the effects of engine loss on the short takeoff and landing performance of powered-lift aircraft can be effectively mitigated by cross-shafting the engine fans in a twin-engine configuration. Engine-out takeoff and landing performances are compared for three powered-lift aircraft configurations: one with four engines, one with two engines, and one with two engines in which the fans are cross-shafted. The results show that the engine-out takeoff and landing performance of the cross-shafted two-engine configuration is significantly better than that of the two-engine configuration without cross-shafting.
Technical Paper

Integration of Cockpit Displays for Surface Operations: The Final Stage of a Human-Centered Design Approach

2000-10-10
2000-01-5521
A suite of cockpit navigation displays for low-visibility airport surface operations has been designed by researchers at NASA Ames Research Center following a human-centered process. This paper reports on the final research effort in this process that examined the procedural integration of these technologies into the flight deck. Using NASA Ames' high-fidelity Advanced Concepts Flight Simulator, eighteen airline crews completed fourteen low-visibility (RVR 1000′) land-and-taxi scenarios that included both nominal (i.e., hold short of intersections, route amendments) and off-nominal taxi scenarios designed to assess how pilots integrate these technologies into their procedures and operations. Recommendations for integrating datalink and cockpit displays into current and future surface operations are provided.
Journal Article

Prediction of Weather Impacts on Airport Arrival Meter Fix Capacity

2019-03-19
2019-01-1350
This paper introduces a data driven model for predicting airport arrival capacity with 2-8 hour look-ahead forecast data. The model is suitable for air traffic flow management by explicitly investigating the impact of convective weather on airport arrival meter fix throughput. Estimation of the arrival airport capacity under arrival meter fix flow constraints due to severe weather is an important part of Air Traffic Management (ATM). Airport arrival capacity can be reduced if one or more airport arrival meter fixes are partially or completely blocked by convective weather. When the predicted airport arrival demands exceed the predicted available airport’s arrival capacity for a sustained period, Ground Delay Program (GDP) operations will be triggered by ATM system.
X