Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Considerations in the Development of Habitats for the Support of Live Rodents on the International Space Station

2001-07-09
2001-01-2228
The animal habitat under development for the International Space Station (ISS) provides a unique opportunity for the physiological and biological science community to perform controlled experiments in microgravity on rats and mice. This paper discusses the complexities that arise in developing a new animal habitat to be flown aboard the ISS. Such development is incremental and moves forward by employing the past successes, learning from experienced shortcomings, and utilizing the latest technologies. The standard vivarium cage on the ground can be a very simple construction, however the habitat required for rodents in microgravity on the ISS is extremely complex. This discussion presents an overview of the system requirements and focuses on the unique scientific and engineering considerations in the development of the controlled animal habitat parameters. In addition, the challenges to development, specific science, animal welfare, and engineering issues are covered.
Technical Paper

Space Life Support from the Cellular Perspective

2001-07-09
2001-01-2229
Determining the fundamental role of gravity in vital biological systems in space is one of six science and research areas that provides the philosophical underpinning for why NASA exists. The study of cells, tissues, and microorganisms in a spaceflight environment holds the promise of answering multiple intriguing questions about how gravity affects living systems. To enable these studies, specimens must be maintained in an environment similar to that used in a laboratory. Cell culture studies under normal laboratory conditions involve maintaining a highly specialized environment with the necessary temperature, humidity control, nutrient, and gas exchange conditions. These same cell life support conditions must be provided by the International Space Station (ISS) Cell Culture Unit (CCU) in the unique environment of space. The CCU is a perfusion-based system that must function in microgravity, at unit gravity (1g) on earth, and from 0.1g up to 2g aboard the ISS centrifuge rotor.
Technical Paper

Solid Waste Processing - An Essential Technology for the Early Phases of Mars Exploration and Colonization

1997-07-01
972272
Terraforming of Mars is the long-term goal of colonization of Mars. However, this process is likely to be a very slow process and conservative estimates involving a synergetic, technocentric approach suggest that it may take around 10,000 years before the planet can be parallel to that of Earth and where humans can live in open systems (Fogg, 1995). Hence, for the foreseeable future, any missions will require habitation within small confined habitats with high biomass to atmospheric mass ratios, thereby requiring that all wastes be recycled. Processing of the wastes will ensure predictability and reliability of the ecosystem and reduce resupply logistics. Solid wastes, though smaller in volume and mass than the liquid wastes, contain more than 90% of the essential elements required by humans and plants.
Technical Paper

Development of Insect Habitat System for Studying Long Duration Circadian Rhythm Changes on Mir Space Station

1997-07-01
972311
A habitat for housing up to 32 Tenebrionid, black body beetles (Trigonoscelis gigas Reitter) has been developed at Ames Research Center for conducting studies to evaluate the effects of long duration spaceflight upon insect circadian timing systems. This habitat, identified as the Beetle Kit, provides an automatically controlled lighting system and activity and temperature recording devices, as well as individual beetle enclosures. Each of the 32 enclosures in a Beetle Kit allows for ad lib movement of the beetle as well as ventilation of the beetle enclosure via an externally operated hand pump. Two Beetle Kits were launched on STS-84 (Shuttle-Mir Mission-06) on May 15, 1997 and were transferred to the Priroda module of the Russian Mir space station on May 18 as part of the NASA/Mir Phase 1 Science Program. Following the Progress collision with Spektr on June 25, the Kits were transferred to the Kristall module. The beetles will remain on Mir for approximately 135 days.
Technical Paper

Development of the Standard Interface Glovebox (SIGB) for use on Shuttle, MIR, and International Space Station

1997-07-01
972310
An innovative design that meets both Shuttle and Space Station requirements for a user-friendly, volume-efficient, portable glovebox system has been developed at Ames Research Center (ARC). The Standard Interface Glovebox (SIGB) has been designed as a two Middeck locker-sized system that mounts in a Middeck Rack Structure (MRS) or in any rack using the Standard Interface Rack (SIR) rail spacing. The MRS provides structural support for the SIGB during all aspects of the mission and is an interface consistent with NASA's desire for commonality of mechanical interfaces, allowing the SIGB to be flown on essentially any manned space platform. The SIGB provides an enclosed work volume which operates at negative pressure relative to ambient, as well as excellent lighting and ample work volume for anticipated life sciences-related experiment operations inflight.
Technical Paper

Accommodating Rodents During Extended Microgravity Missions

1997-07-01
972306
This study examines the current state of the art in rodent habitats as well as the next generation of rodent habitats currently under development at NASAs Ames Research Center. Space Shuttle missions are currently limited in duration to just over two weeks. In contrast to this, future life science missions aboard the Space Station may last months or even years. This will make resource conservation and utilization critical issues in the development of rodent habitats for extended microgravity missions. Emphasis is placed on defining rodent requirements for extended space flights of up to 90 days, and on improving habitability and extending the useful performance life of rodent habitats.
Technical Paper

On-Orbit and Ground Performance of the PGBA Plant Growth Facility

1997-07-01
972366
PGBA, a plant growth facility developed for commercial space biotechnology research, successfully grew a total of 50 plants (6 species) during 10 days aboard the Space Shuttle Endeavor (STS-77), and has reflown aboard the Space Shuttle Columbia (STS-83 for 4 days and STS-94 for 16 days) with 55 plants and 10 species. The PGBA life support system provides atmospheric, thermal, and humidity control as well as lighting and nutrient supply in a 33 liter microgravity plant growth chamber. The atmosphere treatment system removes ethylene and other hydrocarbons, actively controls CO2 replenishment, and provides passive O2 control. Temperature and humidity are actively controlled.
Technical Paper

Waste Incineration for Resource Recovery in a Bioregenerative Life Support System

1997-07-01
972429
For the last two years, the University of Utah and Reaction Engineering International, in cooperation with NASA Ames Research Center (ARC), have been developing a waste incineration system for regenerative life support systems. The system is designed to burn inedible plant biomass and human waste. The goal is to obtain an exhaust gas clean enough to recycle to either the plant or human habitats. The incineration system, a fluidized bed reactor, has been designed for a 4-person mission. This paper will detail the design of the units. In addition, results will be presented from testing at the University of Utah. Presently, the unit has been shipped to Ames Research Center for more tests prior to delivery to Johnson Space Center for testing in a 90-day, 4-person test.
Technical Paper

An Evaluation of Potential Mars Transit Vehicle Water Treatment Systems

1998-07-13
981538
This paper compares four potential water treatment systems in the context of their applicability to a Mars transit vehicle mission. The systems selected for evaluation are the International Space Station system, a JSC bioreactor-based system, the vapor phase catalytic ammonia removal system, and the direct osmotic concentration system. All systems are evaluated on the basis of their applicability for use in the context of the Mars Reference Mission. Each system is evaluated on the basis of mass equivalency. The results of this analysis indicate that there is effectively no difference between the International Space Station system and the JSC bioreactor configurations. However, the vapor phase catalytic ammonia removal and the direct osmotic concentration systems offer a significantly lower mass equivalency (approximately 1/7 the ISS or bioreactor systems).
Technical Paper

Mass Transport in a Spaceflight Plant Growth Chamber

1998-07-13
981553
The Plant Generic BioProcessing Apparatus (PGBA), a plant growth facility developed for commercial space biotechnology research, has flown successfully on 3 spaceflight missions for 4, 10 and 16 days. The environmental control systems of this plant growth chamber (28 liter/0.075 m2) provide atmospheric, thermal, and humidity control, as well as lighting and nutrient supply. Typical performance profiles of water transpiration and dehumidification, carbon dioxide absorption (photosynthesis) and respiration rates in the PGBA unit (on orbit and ground) are presented. Data were collected on single and mixed crops. Design options and considerations for the different sub-systems are compared with those of similar hardware.
Technical Paper

Space Station Lessons Learned from NASA/Mir Fundamental Biology Research Program

1998-07-13
981606
Ames Research Center's Life Sciences Division was responsible for managing the development of fundamental biology flight experiments during the Phase 1 NASA/Mir Science Program. Beginning with astronaut Norm Thagard's historic March, 1995 Soyuz rendezvous with the Mir station and continuing through Andy Thomas' successful return from Mir onboard STS-91 in June, 1998, the NASA/Mir Science Program has provided scientists with unparalleled long duration research opportunities. In addition, the Phase 1 program has yielded many valuable lessons to program and project management personnel who are managing the development of future International Space Station payload elements. This paper summarizes several of the key space station challenges faced and associated lessons learned by the Ames Research Center Fundamental Biology Research Project.
Technical Paper

Fundamental Biology Research During the NASA/Mir Science Program

1995-07-01
951477
A multi-discipline, multi-year collaborative spaceflight research program (NASA/Mir Science Program) has been established between the United States and Russia utilizing the capabilities of the Russian Mir Space Station and the NASA space shuttle fleet. As a key research discipline to be carried out onboard Mir, fundamental biology research encompasses three basic objectives: first, to investigate long-term effects of microgravity upon plant and avian physiology and developmental biology; second, to investigate the long-term effects of microgravity upon circadian rhythm patterns of biological systems; and third, to characterize the long-term radiation environment (internal and external) of the Russian Mir space station. The first joint U.S./Russian fundamental biology research on-board Mir is scheduled to begin in March, 1995 with the Mir mission 18 and conclude with the docking of the U.S. shuttle to Mir in June, 1995 during the STS-71, Spacelab/Mir Mission-1 (SLM-1).
Technical Paper

Modification of the Research Animal Holding Facility (RAHF) to Support Nursing Rats and Their Litters During Spaceflight

1995-07-01
951478
The Research Animal Holding Facility (RAHF) is a spaceflight-qualified hardware system for housing adult rats. The Neurolab Space Shuttle mission, targeted for February 1998 on STS-89, will include neuroscience experiments involving nursing rat dams and neonates (newborn rats). Rat neonates have never been previously flown for spaceflight experimentation, and they present unique life support, science, and engineering challenges in the Spacelab microgravity environment. Modifications of the RAHF (with an associated comprehensive testing program, including spaceflight) are currently underway at NASA Ames Research Center (ARC), in order to add to the RAHF the capability of supporting nursing dams and neonates in preparation for Neurolab.
Technical Paper

Remote Sites as Analogs for Lunar and Mars Habitat Pilot Studies

1994-06-01
941455
Planetary surface exploration and establishment of human habitats are complex tasks requiring a wide variety of capabilities. We currently do not posses these capabilities or experience base necessary for long-duration habitation of other planets. Future exploration can be guided by experiences gained during analogous activities at appropriate sites on Earth. The Antarctic continent is of great analog value to NASA in the area of planetary exploration. The U.S. South Pole Station is of particular relevance to habitat development. The Station offers great fidelity in resemblance to NASA missions, an effective infrastructure is already in place to support activities, and implementation of NASA-derived technologies can improve the quality of life for Station inhabitants and reduce the environmental impact of human activities on the Antarctic continent. These technologies can also address important issues facing remote communities around the globe.
Technical Paper

Concept for a Life Support System Testbed in Space

1994-06-01
941450
The concept of a general purpose life support system testbed for use in space grew out of considerations arising from the recent consolidation of NASA's Advanced Life Support (ALS) Systems programs. Both the physical-chemical and the biological approaches to regenerative life support will require significant amounts of in-space testing in order to prepare for the final development of systems for human life support. Considerations of the technical requirements and rationales for in-space testing has led to the concept of a common testbed that will allow faster and less expensive long duration tests.
Technical Paper

Development of an In-Flight Refill Unit for Replenishing Research Animal Drinking Water

1994-06-01
941283
The Spacelab Life Sciences 2 (SLS-2) mission became NASA's longest duration Shuttle mission, lasting fourteen days, when Columbia landed on November 1, 1993. Located within the Spacelab were a total of 48 laboratory rats which were housed in two Research Animal Holding Facilities (RAHFs) developed by the Space Life Sciences Payloads Office (SLSPO) at Ames Research Center. In order to properly maintain the health and well-being of these important research animals, sufficient quantities of food and water had to be available for the duration of the mission. An Inflight Refill Unit was developed by the SLSPO to replenish the animals' drinking water inflight using the Shuttle potable water system in the middeck galley as the source of additional water. The Inflight Refill Unit consists of two major subsystems, a Fluid Pumping Unit (FPU) and a Collapsible Water Reservoir (CWR).
Technical Paper

The CELSS Antarctic Analog Project and Validation of Assumptions and Solutions Regarding Regenerative Life Support Technologies

1996-07-01
961589
The CELSS Antarctic Analog Project (CAAP) is providing NASA and the National Science Foundation (NSF) with an understanding of the complex and interrelated elements of life support and habitation, both on the Antarctic continent and in future missions to space. CAAP is providing a method for challenging the assumption upon which the application of regenerative life support systems are based and thus is providing a heritage of reliability and dependable function. Currently in the early stages of the project, CAAP is laying a path in addressing system engineering issues, technology selection and integrated operation under a set of relevant and real mission constraints. Recent products include identification of energy as a critical limiting resource in the potential application of regenerative systems. Alternatives to the traditional method of life support system development and energy management have been developed and are being implemented in the CAAP testbed.
Technical Paper

Characterization of Condensate from the Research Animal Holding Facility (RAHF)

1994-06-01
941506
Life Sciences research on Space Station will utilize rats to study the effects of the microgravity environment on mammalian physiology and to develop countermeasures to those effects for the health and safety of the crew. The animals will produce metabolic water which must be reclaimed to minimize logistics support. The condensate from the Research Animal Holding Facility (RAHF) flown on Spacelab Life Sciences-2 (SLS-2) in October 1993 was used as an analog to determine the type and quantity of constituents which the Space Station (SS) water reclamation system will have to process. The most significant organics present in the condensate were 2-propanol, glycerol, ethylene glycol, 1,2-propanediol, acetic acid, acetone, total proteins, urea and caprolactam while the most significant inorganic was ammonia. Microbial isolates included Xanthomonas, Sphingobacterium, Pseudomonas, Penicillium, Aspergillus and Chrysosporium.
Technical Paper

Design, Calibration and Implementation of a Biosynthetic Water Vapor Source

1994-06-01
941594
In efforts to generate a modeling and simulation system for the environmental control and life support system for a small plant growth chamber, the requirement for a biosynthetic water vapor source was found. The water vapor source was designed to inject a known and controlled rate of water vapor into the laboratory version of NASA Ames Research Center's Salad Machine. The rationale for a water vapor source, the design of the source device, the procedures and results of calibration and the method of integrating and utilizing the device with the Salad Machine are described.
Technical Paper

Development of an Advanced Life Support Testbed at the Amundsen-Scott South Pole Station

1994-06-01
941610
This paper presents a description of the Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP) and its functionality as a pilot study for the design of a future Lunar-Mars habitat. A description of the prototype development testbed, located at Ames Research, is provided as well as an analysis of the key design parameters. The CAAP program is tasked with the development of a life support testbed at the South Pole. This facility will include food production, waste processing, and in situ energy production capabilities. The testbed will provide NASA with a remote facility located in an extremely harsh environment which has been designed to provide a useful analog to the deployment of a future Lunar-Martian habitat. NASA's program goals are the operational testing of life support technologies and the conduct of scientific studies to facilitate future technology selection and system design.
X