Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Engineering a Visual System for Seeing Through Fog

We examine the requirements for on-board aircraft sensor systems that would allow pilots to “see through” poor weather, especially fog, and land and rollout aircraft under conditions that currently cause flight cancellations and airport closures. Three visual aspects of landing and rollout are distinguished: guidance, hazard detection and hazard recognition. The visual features which support the tasks are discussed. Three broad categories of sensor technology are examined: passive millimeter wave (PMMW), imaging radar, and passive infrared (IR). PMMW and imaging radar exhibit good weather penetration, but poor spatial and temporal resolution. Imaging radar exhibits good weather penetration, but typically relies on a flat-earth assumption which can lead to interpretive errors. PMMW systems have a narrow field of view. IR has poorer weather penetration but good spatial resolution.
Technical Paper

Propulsion System Sizing For Powered Lift And Mechanical Flap Quiet Aircraft

Propulsion system sizing for mechanical flap and externally blown flap aircraft is demonstrated. Included in this study is the effect of various levels of noise suppression on the aircraft final design characteristics. Both aircraft are sized to operate from a 3000 ft runway and perform the same mission. For each aircraft concept, propulsion system sizing is demonstrated for two different engine cycles-one having a fan pressure ratio of 1.5 and a bypass ratio of 9 and the other having a fan pressure ratio of 1.25 and a bypass ratio of 17.8. The results presented include the required thrust to weight ratio, wing loading, resulting gross weight and direct operating costs as functions of the engine noise level for each combination of engine cycle and aircraft concept.
Technical Paper

Summary of NASA's Extreme Short Take-Off and Landing (ESTOL) Vehicle Sector Activities

NASA is exploring a research activity to identify the technologies that will enable an Extreme Short Take-Off and Landing (ESTOL) aircraft. ESTOL aircraft have the potential to offer a viable solution to airport congestion, delay, capacity, and community noise concerns. This can be achieved by efficiently operating in the underutilized or unused airport ground and airspace infrastructure, while operating simultaneously, but not interfering with, conventional air traffic takeoffs and landings. Concurrently, the Air Force is exploring ESTOL vehicle solutions in the same general performance class as the NASA ESTOL vehicle to meet a number of Advanced Air Mobility missions. The capability goals of both the military and civil vehicles suggests synergistic technology development benefits. This paper presents a summary of the activities being supported by the NASA ESTOL Vehicle Sector.
Technical Paper

Integration of Cockpit Displays for Surface Operations: The Final Stage of a Human-Centered Design Approach

A suite of cockpit navigation displays for low-visibility airport surface operations has been designed by researchers at NASA Ames Research Center following a human-centered process. This paper reports on the final research effort in this process that examined the procedural integration of these technologies into the flight deck. Using NASA Ames' high-fidelity Advanced Concepts Flight Simulator, eighteen airline crews completed fourteen low-visibility (RVR 1000′) land-and-taxi scenarios that included both nominal (i.e., hold short of intersections, route amendments) and off-nominal taxi scenarios designed to assess how pilots integrate these technologies into their procedures and operations. Recommendations for integrating datalink and cockpit displays into current and future surface operations are provided.
Technical Paper

Aviation Data Integration System

A number of airlines have FOQA programs that analyze archived flight data. Although this analysis process is extremely useful for assessing airline concerns in the areas of aviation safety, operations, training, and maintenance, looking at flight data in isolation does not always provide the context necessary to support a comprehensive analysis. To improve the analysis process, the Aviation Data Integration Project (ADIP) has been developing techniques for integrating flight data with auxiliary sources of relevant aviation data. ADIP has developed an aviation data integration system (ADIS) comprised of a repository and associated integration middleware that provides rapid and secure access to various data sources, including weather data, airport operating condition (ATIS) reports, radar data, runway visual range data, and navigational charts.
Technical Paper

Secure Large-Scale Airport Simulations Using Distributed Computational Resources

To fully conduct research that will support the far-term concepts, technologies and methods required to improve the safety of Air Transportation a simulation environment of the requisite degree of fidelity must first be in place. The Virtual National Airspace Simulation (VNAS) will provide the underlying infrastructure necessary for such a simulation system. Aerospace-specific knowledge management services such as intelligent data-integration middleware will support the management of information associated with this complex and critically important operational environment. This simulation environment, in conjunction with a distributed network of super-computers, and high-speed network connections to aircraft, and to Federal Aviation Administration (FAA), airline and other data-sources will provide the capability to continuously monitor and measure operational performance against expected performance.
Technical Paper

Airport Remote Tower Sensor Systems

Remote Tower Sensor Systems are proof-of-concept prototypes being developed by NASA/Ames Research Center (NASA/ARC) with collaboration with the FAA and NOAA. RTSS began with the deployment of an Airport Approach Zone Camera System that includes real-time weather observations at San Francisco International Airport. The goal of this research is to develop, deploy, and demonstrate remotely operated cameras and sensors at several major airport hubs and un-towered airports. RTSS can provide real-time weather observations of airport approach zone. RTSS will integrate and test airport sensor packages that will allow remote access to real-time airport conditions and aircraft status.
Journal Article

Modeling Weather Impact on Airport Arrival Miles-in-Trail Restrictions

When the demand for either a region of airspace or an airport approaches or exceeds the available capacity, miles-in-trail (MIT) restrictions are the most frequently issued traffic management initiatives (TMIs) that are used to mitigate these imbalances. Miles-in-trail operations require aircraft in a traffic stream to meet a specific inter-aircraft separation in exchange for maintaining a safe and orderly flow within the stream. This stream of aircraft can be departing an airport, over a common fix, through a sector, on a specific route or arriving at an airport. This study begins by providing a high-level overview of the distribution and causes of arrival MIT restrictions for the top ten airports in the United States. This is followed by an in-depth analysis of the frequency, duration and cause of MIT restrictions impacting the Hartsfield-Jackson Atlanta International Airport (ATL) from 2009 through 2011.
Journal Article

Modeling Weather Impact on Ground Delay Programs

Scheduled arriving aircraft demand may exceed airport arrival capacity when there is abnormal weather at an airport. In such situations, Federal Aviation Administration (FAA) institutes ground-delay programs (GDP) to delay flights before they depart from their originating airports. Efficient GDP planning depends on the accuracy of prediction of airport capacity and demand in the presence of uncertainties in weather forecast. This paper presents a study of the impact of dynamic airport surface weather on GDPs. Using the National Traffic Management Log, effect of weather conditions on the characteristics of GDP events at selected busy airports is investigated. Two machine learning methods are used to generate models that map the airport operational conditions and weather information to issued GDP parameters and results of validation tests are described.
Technical Paper

Prediction of Weather Impacts on Airport Arrival Meter Fix Capacity

This paper introduces a data driven model for predicting airport arrival capacity with 2-8 hour look-ahead forecast data. The model is suitable for air traffic flow management by explicitly investigating the impact of convective weather on airport arrival meter fix throughput. Estimation of the arrival airport capacity under arrival meter fix flow constraints due to severe weather is an important part of Air Traffic Management (ATM). Airport arrival capacity can be reduced if one or more airport arrival meter fixes are partially or completely blocked by convective weather. When the predicted airport arrival demands exceed the predicted available airport’s arrival capacity for a sustained period, Ground Delay Program (GDP) operations will be triggered by ATM system.