Refine Your Search

Topic

Author

Search Results

Technical Paper

Space Life Support from the Cellular Perspective

2001-07-09
2001-01-2229
Determining the fundamental role of gravity in vital biological systems in space is one of six science and research areas that provides the philosophical underpinning for why NASA exists. The study of cells, tissues, and microorganisms in a spaceflight environment holds the promise of answering multiple intriguing questions about how gravity affects living systems. To enable these studies, specimens must be maintained in an environment similar to that used in a laboratory. Cell culture studies under normal laboratory conditions involve maintaining a highly specialized environment with the necessary temperature, humidity control, nutrient, and gas exchange conditions. These same cell life support conditions must be provided by the International Space Station (ISS) Cell Culture Unit (CCU) in the unique environment of space. The CCU is a perfusion-based system that must function in microgravity, at unit gravity (1g) on earth, and from 0.1g up to 2g aboard the ISS centrifuge rotor.
Technical Paper

Growth of Super-Dwarf Wheat on the Russian Space Station MIR

1996-07-01
961392
During 1995, we tested instruments and attempted a seed-to-seed experiment with Super-Dwarf wheat in the Russian Space Station Mir. Utah instrumentation included four IR gas analyzers (CO2 and H2O vapor, calculate photosynthesis, respiration, and transpiration) and sensors for air and leaf (IR) temperatures, O2, pressure, and substrate moisture (16 probes). Shortly after planting on August 14, three of six fluorescent lamp sets failed; another failed later. Plastic bags, necessary to measure gas exchange, were removed. Hence, gases were measured only in the cabin atmosphere. Other failures led to manual watering, control of lights, and data transmission. The 57 plants were sampled five times plus final harvest at 90 d. Samples and some equipment (including hard drives) were returned to earth on STS-74 (Nov. 20). Plants were disoriented and completely vegetative. Maintaining substrate moisture was challenging, but the moisture probes functioned well.
Technical Paper

Steady-State System Mass Balance for the BIO-Plex

1998-07-13
981747
A steady-state system mass balance calculation was performed to investigate design issues regarding the storage and/or processing of solid waste. In the initial stages of BIO-Plex, only a certain percentage of the food requirement will be satisfied through crop growth. Since some food will be supplied to the system, an equivalent amount of waste will accumulate somewhere in the system. It is a system design choice as to where the mass should accumulate in the system. Here we consider two approaches. One is to let solid waste accumulate in order to reduce the amount of material processing that is needed. The second is to process all of the solid waste to reduce solid waste storage and then either resupply oxygen or add physical/chemical (P/C) processors to recover oxygen from the excess carbon dioxide and water that is produced by the solid waste processor.
Technical Paper

Plant Growth and Plant Environmental Monitoring Equipment on the Mir Space Station: Experience and Data from the Greenhouse II Experiment

1996-07-01
961364
A three country effort (U.S., Russia, and Bulgaria) has upgraded the plant growth facilities on the Mir Space Station and used the new facility to grow wheat for 90 days. The Svet plant-growth facility was reactivated and used in an initial experiment as part of the Shuttle/Mir program, August to November, 1995. The Svet system, used first to grow cabbage and radish during a 1990 experiment, was augmented by the addition of a U.S. developed Gas Exchange Measurement System (GEMS) that measures a range of environmental parameters plus transpiration, photosynthesis, and possibly respiration. Environmental parameters include cabin, chamber, root-zones, and leaf temperatures. Light levels, relative humidity, oxygen, and atmospheric pressure are also measured. High-accuracy water-vapor and carbon-dioxide concentrations and differences are measured using specially developed IRGA systems.
Technical Paper

Martian Atmospheric Utilization by Temperature-Swing Adsorption

1996-07-01
961597
Technologies that can be used to extract oxygen and other useful products from the Martian atmosphere for exploration missions will require compression of the low-pressure Martian gas. One technique that appears ideally suited for this application is temperature-swing adsorption, which can produce purified and compressed CO2 in a virtually solid-state process whose energy requirements can be met mainly through the diurnal temperature cycle. This paper focuses on material selection and sensitivity of this adsorption process to variations in Mars surface conditions. Experimental results indicate that, of the zeolite and carbon materials studied, a NaX zeolite is a superior adsorbent in terms of the amount of pressurized gas it can produce per unit mass of sorbent.
Technical Paper

Direct-Interface Fusible Heat Sink Performance Tests

1994-06-01
941384
A high fidelity, direct-interface, fusible heat sink for cooling astronauts during extravehicular activity was constructed and tested. The design includes special connectors that allow the coolant loop to be directly connected to the fusible material, in this case water. Aspects tested were start-up characteristics, cooling rate, and performance during simulated heat loads. A simplified math model was used to predict the effect of increasing the effective thermal conductivity on heat sink freezing rate. An experiment was designed to measure the effective thermal conductivity of a water/Aluminum foam system, and full gravity tests were conducted to compare the freezing rates of water and water/foam systems. This paper discusses the results of these efforts.
Technical Paper

A Pilot Scale System for Low Temperature Solid Waste Oxidation and Recovery of Water

2009-07-12
2009-01-2365
In February 2004 NASA released “The Vision for Space Exploration.” The goals outlined in this document include extending the human presence in the solar system, culminating in the exploration of Mars. A key requirement for this effort is to identify a safe and effective method to process waste. Methods currently under consideration include incineration, microbial oxidation, pyrolysis, drying, and compaction. Although each has advantages, no single method has yet been developed that is safe, recovers valuable resources including oxygen and water, and has low energy and space requirements. Thus, the objective of this work was to develop a low temperature oxidation process to convert waste cleanly and rapidly to carbon dioxide and water. TDA and NASA Ames Research Center have developed a pilot scale low temperature ozone oxidation system to convert organic waste to CO2 and H2O.
Technical Paper

Preliminary Development of a Suit Port for Planetary Surface EVA — Design Studies

2009-07-12
2009-01-2586
This paper present a summary of the design studies for the suit port proof of concept. The Suit Port reduces the need for airlocks by docking the suits directly to a rover or habitat bulkhead. The benefits include reductions in cycle time and consumables traditionally used when transferring from a pressurized compartment to EVA and mitigation of planetary surface dust from entering into the cabin. The design focused on the development of an operational proof of concept evaluated against technical feasibility, level of confidence in design, robustness to environment and failure, and the manufacturability. A future paper will discuss the overall proof of concept and provide results from evaluation testing including gas leakage rates upon completion of the testing program.
Technical Paper

Pyrolysis of Mixed Solid Food, Paper, and Packaging Wastes

2008-06-29
2008-01-2050
Pyrolysis is a very versatile waste processing technology which can be tailored to produce a variety of solid, liquid and/or gaseous products. The pyrolysis processing of pure and mixed solid waste streams has been under investigation for several decades for terrestrial use and a few commercial units have been built for niche applications. Pyrolysis has more recently been considered for the processing of mixed solid wastes in space. While pyrolysis units can easily handle mixed solid waste streams, the dependence of the pyrolysis product distribution on the component composition is not well known. It is often assumed that the waste components (e.g., food, paper, plastic) behave independently, but this is a generalization that can usually only be applied to the overall weight loss and not always to the yields of individual gas species.
Technical Paper

Evaluation of Commercial Off-the-Shelf Ammonia Sorbents and Carbon Monoxide Oxidation Catalysts

2008-06-29
2008-01-2097
Designers of future space vehicles envision simplifying the Atmosphere Revitalization (AR) system by combining the functions of trace contaminant (TC) control and carbon dioxide removal into one swing-bed system. Flow rates and bed sizes of the TC and CO2 systems have historically been very different. There is uncertainty about the ability of trace contaminant sorbents to adsorb adequately in a high-flow or short bed length configurations, and to desorb adequately during short vacuum exposures. This paper describes preliminary results of a comparative experimental investigation into adsorbents for trace contaminant control. Ammonia sorbents and low temperature catalysts for CO oxidation are the foci. The data will be useful to designers of AR systems for Constellation. Plans for extended and repeated vacuum exposure of ammonia sorbents are also presented.
Technical Paper

Advanced Development of the Direct Osmotic Concentration System

2008-06-29
2008-01-2145
Direct osmotic concentration (DOC) is an integrated membrane treatment process designed for the reclamation of spacecraft wastewater. The system includes forward osmosis (FO), membrane evaporation, reverse osmosis (RO) and an aqueous phase catalytic oxidation (APCO) post-treatment unit. This document describes progress in the third year of a four year project to advance hardware maturity of this technology to a level appropriate for human rated testing. The current status of construction and testing of the final deliverable is covered and preliminary calculations of equivalent system mass are funished.
Technical Paper

Comparison of Bioregenerative and Physical/Chemical Life Support Systems

2006-07-17
2006-01-2082
Popular depictions of space exploration as well as government life support research programs have long assumed that future planetary bases would rely on small scale, closed ecological systems with crop plants producing food, water, and oxygen and with bioreactors recycling waste. In actuality, even the most advanced anticipated human life support systems will use physical/ chemical systems to recycle water and oxygen and will depend on food from Earth. This paper compares bioregenerative and physical/chemical life support systems using Equivalent System Mass (ESM), which gauges the relative cost of hardware based on its mass, volume, power, and cooling requirements. Bioregenerative systems are more feasible for longer missions, since they avoid the cost of continually supplying food.
Technical Paper

Carbon Production in Space from Pyrolysis of Solid Waste

2006-07-17
2006-01-2183
Pyrolysis processing of solid waste in space will inevitably lead to carbon formation as a primary pyrolysis product. The amount of carbon depends on the composition of the starting materials and the pyrolysis conditions (temperature, heating rate, residence time, pressure). Many paper and plastic materials produce almost no carbon residue upon pyrolysis, while most plant biomass materials or human wastes will yield up to 20-40 weight percent on a dry, as-received basis. In cases where carbon production is significant, it can be stored for later use to produce CO2 for plant growth. Alternatively it can be partly gasified by an oxidizing gas (e.g., CO2, H2O, O2) in order to produce activated carbon. Activated carbons have a unique capability of strongly absorbing a great variety of species, ranging from SO2 and NOx, trace organics, mercury, and other heavy metals.
Technical Paper

Single Loop for Cell Culture (SLCC) – Development and Spaceflight Qualification of a Perfusion Cell Culture System

2006-07-17
2006-01-2212
Single Loop for Cell Culture (SLCC) consists of individual, self-contained, spaceflight cell culture systems with capabilities for automated growth initiation, feeding, sub-culturing and sampling. The cells are grown and contained within a rigid cell specimen chamber (CSC). Bladder tanks provide flush and media fluid. SLCC uses active perfusion flow to provide nutrients and gas exchange, and to dilute waste products by expelling depleted media fluid into a waste bladder tank. The cells can be grown quiescently, or suspended using magnetically coupled stirrers. This paper describes the functional and safety design features, the operational modes and the spaceflight qualification processes including science validation tests, using yeast as a model organism.
Technical Paper

Integration and Synthesis in Astrobiology

2000-07-10
2000-01-2341
Astrobiology is one of the most highly integrative scientific efforts ever undertaken, relying on the synthesis of sciences from astronomy to zoology and geology to genomics to discover the thread of life in the universe. These sciences must be further integrated with the technological revolutions in biotechnology, microminiaturization and information technology to realize the vast potential offered by NASA's mission suites. This paper discusses development of the Astrobiology Roadmap and novel management approaches which attempt to bring in the best scientific and technical talent available to bear on Astrobiology's goals, while simultaneously minimizing the overhead and time to flight for Astrobiology payloads.
Technical Paper

Atmosphere Composition Control of Spaceflight Plant Growth Growth Chambers

2000-07-10
2000-01-2232
Spaceflight plant growth chambers require an atmosphere control system to maintain adequate levels of carbon dioxide and oxygen, as well as to limit trace gas components, for optimum or reproducible scientific performance. Recent atmosphere control anomalies of a spaceflight plant chamber, resulting in unstable CO2 control, have been analyzed. An activated carbon filter, designed to absorb trace gas contaminants, has proven detrimental to the atmosphere control system due to its large buffer capacity for CO2. The latest plant chamber redesign addresses the control anomalies and introduces a new approach to atmosphere control (low leakage rate chamber, regenerative control of CO2, O2, and ethylene).
Technical Paper

Characterization of an Integral Thermal Protection and Cryogenic Insulation Material for Advanced Space Transportation Vehicles

2000-07-10
2000-01-2236
NASA’s planned advanced space transportation vehicles will benefit from the use of integral/conformal cryogenic propellant tanks which will reduce the launch weight and lower the earth-to-orbit costs considerably. To implement the novel concept of integral/conformal tanks requires developing an equally novel concept in thermal protection materials. Providing insulation against reentry heating and preserving propellant mass can no longer be considered separate problems to be handled by separate materials. A new family of materials, Superthermal Insulation (STI), has been conceived and investigated by NASA’s Ames Research Center to simultaneously provide both thermal protection and cryogenic insulation in a single, integral material. The present paper presents the results of a series of proof-of-concept tests intended to characterize the thermal performance of STI over a range of operational conditions representative of those which will be encountered in use.
Technical Paper

Artificial Gravity for Mars Missions: The Different Design and Development Options

2000-07-10
2000-01-2246
One of the major impediments to human Mars missions is the development of appropriate countermeasures for long term physiological response to the micro-gravity environment. A plethora of countermeasure approaches have been advanced from strictly pharmacological measures to large diameter rotating spacecraft that would simulate a 1-g environment (the latter being the most conservative from a human health perspective). The different approaches have significantly different implications not only on the overall system design of a Mars Mission Vehicle (MMV) but on the necessary earth-orbiting platform that would be required to qualify the particular countermeasure system. It is found that these different design options can be conveniently categorized in terms of the order of magnitude of the rotation diameter required (100's, 10's, 1's, 0 meters). From this, the different mass penalties associated with each category can be generally compared.
Technical Paper

Reactive Carbon from Life Support Wastes for Incinerator Flue Gas Cleanup

2000-07-10
2000-01-2283
This paper presents the results from a joint research initiative between NASA Ames Research Center and Lawrence Berkeley National lab. The objective of the research is to produce activated carbon from life support wastes and to use the activated carbon to adsorb and chemically reduce the NOx and SO2 contained in incinerator flue gas. Inedible biomass waste from food production is the primary waste considered for conversion to activated carbon. Results to date show adsorption of both NOx and SO2 in activated carbon made from biomass. Conversion of adsorbed NOx to nitrogen has also been observed.
Technical Paper

Microgravity Root Zone Hydration Systems

2000-07-10
2000-01-2510
Accurate root zone moisture control in microgravity plant growth systems is problematic. With gravity, excess water drains along a vertical gradient, and water recovery is easily accomplished. In microgravity, the distribution of water is less predictable and can easily lead to flooding, as well as anoxia. Microgravity water delivery systems range from solidified agar, water-saturated foams, soils and hydroponics soil surrogates including matrix-free porous tube delivery systems. Surface tension and wetting along the root substrate provides the means for adequate and uniform water distribution. Reliable active soil moisture sensors for an automated microgravity water delivery system currently do not exist. Surrogate parameters such as water delivery pressure have been less successful.
X