Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

Pressure-Sensitive Paint Technology Applied to Low-Speed Automotive Testing

2001-03-05
2001-01-0626
Pressure-sensitive paint (PSP) technology is a technique used to experimentally determine surface pressures on models during wind tunnel tests. The key to this technique is a specially formulated pressure-sensitive paint that responds to, and can be correlated with the local air pressure. Wind tunnel models coated with pressure-sensitive paint are able to yield quantitative pressure data on an entire model surface in the form of light intensity values in recorded images. Quantitative results in terms of pressure coefficients (Cp) are obtained by correlating PSP data with conventional pressure tap data. Only a small number of surface taps are needed to be able to obtain quantitative pressure data with the PSP method. This technique is gaining acceptance so that future automotive wind tunnel tests can be done at reduced cost by eliminating most of the expensive pressure taps from wind tunnel models.
Technical Paper

Aerodynamic Analysis of the Elytron 2S Experimental Tiltwing Aircraft

2016-09-20
2016-01-2008
The Elytron 2S is a prototype aircraft concept to allow VTOL capabilities together with fixed wing aircraft performance. It has a box wing design with a centrally mounted tilt-wing supporting two rotors. This paper explores the aerodynamic characteristics of the aircraft using computational fluid dynamics in hover and low speed forward flight, as well as analyzing the unique control system in place for hover. The results are then used to build an input set for NASA Design and Analysis if Rotorcraft software allowing trim and flight stability and control estimations to be made with SIMPLI-FLYD.
Technical Paper

Coaxial Rotor Flow Phenomena in Forward Flight

2016-09-20
2016-01-2009
Coaxial rotors are finding use in advanced rotorcraft concepts. Combined with lift offset rotor technology, they offer a solution to the problems of dynamic stall and reverse flow that often limit single rotor forward flight speeds. In addition, coaxial rotorcraft systems do not need a tail rotor, a major boon during operation in confined areas. However, the operation of two counter-rotating rotors in close proximity generates many possible aerodynamic interactions between rotor blades, blades and vortices, and between vortices. With two rotors, the parameter design space is very large, and requires efficient computations as well as basic experiments to explore aerodynamics of a coaxial rotor and the effects on performance, loads, and acoustics.
Technical Paper

Aerodynamic Drag Reduction of the Underbody of a Class-8 Tractor-Trailer

2006-10-31
2006-01-3532
Experimental measurements of a 1:20-scale tractor-trailer configuration were obtained in the 48- by 32-Inch Subsonic Wind Tunnel at NASA Ames Research Center. The model included significant details of the underbody geometries of both the tractor and trailer. In addition, the tractor included a flow-through grill and a simplified engine block to provide an approximation of the flow through the engine compartment. The experiment was conducted at a Reynolds Number of 430,000 for yaw angles between ±14 deg. The measurements included forces and moments and static surface pressures for various underbody configurations. Simple fairings on the underbodies of the tractor and trailer both yielded a reduction in the wind-averaged drag coefficient of 0.018 (2.7%) when tested separately. A horizontal plate designed to block vertical flow in the tractor-trailer gap provided marginally higher drag reduction (0.021, or 3.2%).
Technical Paper

Aerodynamic Tailoring of the Learjet Model 60 Wing

1993-09-01
932534
The wing of the Learjet Model 60 was tailored for improved aerodynamic characteristics using the TRANAIR transonic full-potential CFD code. A root leading edge glove and wing tip fairing were shaped to reduce shock strength, improve cruise drag and extend the buffet limit. The aerodynamic design was validated by wind tunnel test and flight test data.
Technical Paper

Boundary-Layer Transition and Global Skin Friction Measurement with an Oil-Fringe Imaging Technique

1993-09-01
932550
A new oil-fringe imaging skin friction (FISF) technique to measure skin friction on wind tunnel models is presented. In the method used to demonstrate the technique, lines of oil are applied on surfaces that connect the intended sets of measurement points, and then a wind tunnel is run so that the oil thins and forms interference fringes that are spaced proportional to local skin friction. After a run the fringe spacings are imaged with a CCD-array digital camera and measured on a computer. Skin friction and transition measurements on a two-dimensional wing are presented and compared with computational predictions.
Technical Paper

Test Techniques for STOVL Large-Scale Powered Models

1996-11-18
962251
Predicting and testing for hover performance, both in and out of ground effect, and transition performance, from jet- to wing-borne flight and back, for vertical/short takeoff and landing (V/STOL) configurations can be a difficult task. Large-scale testing of these configurations can provide for a better representation of the flow physics than small-scale testing. This paper will discuss some of the advantages in testing at large-scale and some test techniques and issues involved with testing large-scale STOVL models. The two premier test facilities for testing large- to full-scale STOVL configurations are the Outdoor Aerodynamic Research Facility (OARF) and the 80- by 120-Foot Wind Tunnel of the National Full-Scale Aerodynamics Complex (NFAC). Other items of discussion will include force and moment measurements, jet efflux decay, wall effects, tunnel flow breakdown, strut interference, and flow visualization options.
Technical Paper

Hover/Ground-Effect Testing and Characteristics for a Joint Strike Fighter Configuration

1996-11-18
962253
Hover and ground-effect tests were conducted with the Lockheed-Martin Large Scale Powered Model (LSPM) during June-November 1995 at the Outdoor Aerodynamics Research Facility (OARF) located at NASA Ames Research Center. This was done in support of the Joint Strike Fighter (JSF) Program being lead by the Department of Defense. The program was previously referred to as the Joint Advanced Strike Technology (JAST) Program. The tests at the OARF included: engine thrust calibrations out of ground effect, measurements of individual nozzle jet pressure decay characteristics, and jet-induced hover force and moment measurements in and out of ground effect. The engine calibrations provide data correlating propulsion system throttle and nozzle settings with thrust forces and moments for the bare fuselage with the wings, canards, and tails removed. This permits measurement of propulsive forces and moments while minimizing any of the effects due to the presence of the large horizontal surfaces.
Technical Paper

Detailed Experimental Results of Drag-Reduction Concepts on a Generic Tractor-Trailer

2005-11-01
2005-01-3525
The 1/8-scale Generic Conventional Model was studied experimentally in two wind tunnels at NASA Ames Research Center. The investigation was conducted at a Mach number of 0.15 over a Reynolds number range from 1 to 6 million. The experimental measurements included total and component forces and moments, surface pressures, and 3-D particle image velocimetry. Two configurations (trailer base flaps and skirts) were compared to a baseline representative of a modern tractor aero package. Details of each configuration provide insight into the complex flow field and the resulting drag reduction was found to be sensitive to Reynolds number.
Technical Paper

Microphone Array Phased Processing System (MAPPS): Phased Array System for Acoustic Measurements in a Wind Tunnel

1999-10-19
1999-01-5576
A processing system has been developed to meet increasing demands for detailed noise measurement of aircraft in wind tunnels. Phased arrays enable spatial and amplitude measurements of acoustic sources, including low signal-to-noise sources not measurable by conventional measurement techniques. The Microphone Array Phased Processing System (MAPPS) provides processing and visualization of acoustic array measurements made in wind tunnels. The system uses networked parallel computers to provide noise maps at selected frequencies in a near real-time testing environment. The system has been successfully used in two subsonic, hard-walled wind tunnels, the NASA Ames 7- by 10-Foot Wind Tunnel and the NASA Ames 12-Foot Wind Tunnel. Low level airframe noise that can not be measured with traditional techniques was measured in both tests.
Technical Paper

3D PIV in Wind Tunnel Applications: Measurements of a Truck Wake

1999-10-19
1999-01-5600
Three-component Particle Image Velocimetry (3D PIV) is a fluid velocity measurement technique that has evolved from the laboratory to become a method appropriate for use in large-scale wind tunnel testing. An example application of 3D PIV in a wind tunnel test is described. The PIV technique was applied to characterize the wake of The Ground Transportation System (GTS) model developed for the Department of Energy (DOE) Heavy Vehicle Drag Reduction (HVDR) program. The test was performed in the Ames/Army 7×10 foot wind tunnel. The objective of the PIV measurements was to validate the HVDR computational fluid dynamics code. The PIV method and PIV system are described. Sample truck wake data with and without boattail attachments are shown. 3D PIV system successfully captured the effects of the boattails on the truck wake.
Technical Paper

Force and Moment Measurements with Pressure-Sensitive Paint

1999-10-19
1999-01-5601
The desire to provide integrated surface pressures for aerodynamic loads measurements has been a driving force behind the development of pressure-sensitive paint (PSP). To demonstrate the suitability of PSP for this purpose, it is not sufficient to simply show that PSP is accurate as compared to pressure taps. PSP errors due to misregistration or temperature sensitivity may be high near model edges, where pressure taps are rarely installed. Thus, PSP results will appear good compared to the taps, but will yield inaccurate results when integrated. A more stringent technique is to compare integrated PSP data over the entire model surface with balance and/or CFD results. This paper describes a simple integration method for PSP data and presents comparisons of balance and PSP results for three experiments. PSP is shown quite accurate for normal force measurements, but less effective at determining axial force and moments.
Technical Paper

Numerical Study of a Trapezoidal Wing High-Lift Configuration

1999-10-19
1999-01-5559
An overset grid approach is used to analyze a 3-element trapezoidal wing high-lift configuration. A new software system was developed to automate the overset computational fluid dynamics process. A three-dimensional grid resolution study is conducted, and comparisons of numerical results are made to experimental data which were obtained after the simulations. Comparisons between numerical and experimental data are in good agreement for the lift coefficient over a wide range of angles of attack, up to and including CLmax. Comparisons of chordwise distributions of the pressure coefficient between numerical and experimental data are in good agreement for all three elements, except the lift is under-predicted for the tip region when the wing is near CLmax.
Technical Paper

Progress in Reducing Aerodynamic Drag for Higher Efficiency of Heavy Duty Trucks (Class 7-8)

1999-04-26
1999-01-2238
This paper describes research and development for reducing the aerodynamic drag of heavy vehicles by demonstrating new approaches for the numerical simulation and analysis of aerodynamic flow. In addition, greater use of newly developed computational tools holds promise for reducing the number of prototype tests, for cutting manufacturing costs, and for reducing overall time to market. Experimental verification and validation of new computational fluid dynamics methods are also an important part of this approach. Experiments on a model of an integrated tractor-trailer are underway at NASA Ames Research Center and the University of Southern California. Companion computer simulations are being performed by Sandia National Laboratories, Lawrence Livermore National Laboratory, and California Institute of Technology using state-of- the-art techniques, with the intention of implementing more complex methods in the future.
Technical Paper

Development of Variable Camber Continuous Trailing Edge Flap for Performance Adaptive Aeroelastic Wing

2015-09-15
2015-01-2565
This paper summarizes the recent development of an adaptive aeroelastic wing shaping control technology called variable camber continuous trailing edge flap (VCCTEF). As wing flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. The initial VCCTEF concept was developed in 2010 by NASA under a NASA Innovation Fund study entitled “Elastically Shaped Future Air Vehicle Concept,” which showed that highly flexible wing aerodynamic surfaces can be elastically shaped in-flight by active control of wing twist and bending deflection in order to optimize the spanwise lift distribution for drag reduction. A collaboration between NASA and Boeing Research & Technology was subsequently funded by NASA from 2012 to 2014 to further develop the VCCTEF concept.
Technical Paper

Aerodynamic Drag of Heavy Vehicles (Class 7-8): Simulation and Benchmarking

2000-06-19
2000-01-2209
This paper describes research and development for reducing the aerodynamic drag of heavy vehicles by demonstrating new approaches for the numerical simulation and analysis of aerodynamic flow. Experimental validation of new computational fluid dynamics methods are also an important part of this approach. Experiments on a model of an integrated tractor-trailer are underway at NASA Ames Research Center and the University of Southern California (USC). Companion computer simulations are being performed by Sandia National Laboratories (SNL), Lawrence Livermore National Laboratory (LLNL), and California Institute of Technology (Caltech) using state-of-the-art techniques.
X