Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Assessment of Cognitive Abilities in Simulated Space Ascent Environments

2009-07-12
2009-01-2425
The cognitive abilities of some astronauts are affected during spaceflight. We investigated whether a simulated space flight ascent environment, including vibration and 3.8 Gx ascent forces, would result in cognitive deficits detectable by the WinSCAT test battery. Eleven participants were administered the computerized cognitive test battery, a workload rating questionnaire and a subjective state questionnaire before and after a combination of acceleration plus vibration conditions. The acceleration plus vibration exposure resulted in significant self-reports of physical discomfort but did not significantly affect cognitive test battery scores. We discuss ways in which a cognitive assessment tool could be made more sensitive to subtle cognitive changes relevant to astronaut performance.
Technical Paper

Training Pilots for In-flight Icing: Cognitive Foundations for Effective Learning and Operational Application

2003-06-16
2003-01-2141
Aviation training has remained largely untouched by decades of development in cognitive science. In aviation, people must be trained to perform complicated tasks and make good operational decisions in complex dynamic environments. However, traditional approaches to professional aviation training are not well designed to accomplish this goal. Aviation training has been based mainly on relatively rigid classroom teaching of factual information followed by on-the-job mentoring. This approach tends to compartmentalize knowledge. It is not optimal for teaching operational decision-making, and it is costly in time and personnel. The effectiveness of training can be enhanced by designing programs that support the psychological processes involved in learning, retention, retrieval, and application. By building programs that are informed by current work in cognitive science and that utilize modern technological advances, efficient training programs can be created.
Technical Paper

Designing User-Interfaces for the Cockpit: Five Common Design Errors and How to Avoid Them

2002-11-05
2002-01-2968
The efficiency and robustness of pilot-automation interaction is a function of the volume of memorized action sequences required to use the automation to perform mission tasks. This paper describes a model of pilot cognition for the evaluation of the cognitive usability of cockpit automation. Five common cockpit automation design errors are discussed with examples.
Technical Paper

HUD Symbology for Surface Operations: Command Guidance vs. Situation Guidance Formats

2002-11-05
2002-01-3006
This study investigated pilots' taxi performance, situation awareness and workload while taxiing with three different head-up display (HUD) symbology formats: Command-guidance, Situation-guidance and Hybrid. Command-guidance symbology provided the pilot with required control inputs to maintain centerline position; Situation-guidance symbology provided conformal, scene-linked navigation information; while the Hybrid symbology combined elements of both symbologies. Taxi speed, centerline tracking accuracy, workload and situation awareness were assessed. Taxi speed, centerline accuracy, and situation awareness were highest and workload lowest with Situation-guidance and Hybrid symbologies. These results are thought to be due to cognitive tunneling induced by the Command-guidance symbology. The conformal route information of the Situation-guidance and Hybrid HUD formats provided a common reference with the environment, which may have supported better distribution of attention.
Technical Paper

The CELSS Antarctic Analog Project and Validation of Assumptions and Solutions Regarding Regenerative Life Support Technologies

1996-07-01
961589
The CELSS Antarctic Analog Project (CAAP) is providing NASA and the National Science Foundation (NSF) with an understanding of the complex and interrelated elements of life support and habitation, both on the Antarctic continent and in future missions to space. CAAP is providing a method for challenging the assumption upon which the application of regenerative life support systems are based and thus is providing a heritage of reliability and dependable function. Currently in the early stages of the project, CAAP is laying a path in addressing system engineering issues, technology selection and integrated operation under a set of relevant and real mission constraints. Recent products include identification of energy as a critical limiting resource in the potential application of regenerative systems. Alternatives to the traditional method of life support system development and energy management have been developed and are being implemented in the CAAP testbed.
X