Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

Study of Two and Four Stroke Outboard Marine Engine Exhaust Emissions Using a Total Dilution Sampling System

1997-09-08
972740
The exhaust emissions from small engines in general and marine engines in particular have come under scrutiny over the past few years as new exhaust emission regulations have been proposed and put into force. The standard method for exhaust emission sampling of outboard marine engines is to analyze raw exhaust in the exhaust manifold of the engine. In this study a total dilution sampling system for the gaseous emissions, similar to what is used for light and heavy duty vehicles and engines, and a separate water sampling method were used to evaluate the exhaust emissions from stock two and four stroke outboard marine engines.
Technical Paper

Development of the Compact Flash Evaporator System for Exploration

2007-07-09
2007-01-3204
This paper will discuss the status of the Compact Flash Evaporator System (CFES) development at NASA Glenn. Three alternative heat sink technologies are being developed under Thermal Control for Advanced Capabilities within the Exploration Technology Development Program. One of them is CFES, a spray cooling concept related to the current Space Shuttle Orbiter Flash Evaporator System (FES). In the CFES concept, water is sprayed on the outside of a flat plate heat exchanger, through which flows the vehicle's primary vehicle heat transfer fluid. The steam is then exhausted to space in an open-loop system. Design, fabrication and testing of the CFES at NASA's Glenn Research Center will be reported.
Technical Paper

Microwave Powered Gravitationally Independent Medical Grade Water Generation

2007-07-09
2007-01-3176
The on-demand production of Medical Grade Water (MGW) is a critical biomedical requirement for future long-duration exploration missions. Potentially, large volumes of MGW may be needed to treat burn victims, with lesser amounts required to reconstitute pharmacological agents for medical preparations and biological experiments, and to formulate parenteral fluids during medical treatment. Storage of MGW is an untenable means to meet this requirement, as are nominal MGW production methods, which use a complex set of processes to remove chemical contaminants, inactivate all microorganisms, and eliminate endotoxins, a toxin originating from gram-negative bacteria cell walls. An innovative microgravity compatible alternative, using a microwave-based MGW generator, is described in this paper. The MGW generator efficiently couples microwaves to a single-phase flowing stream, resulting in super-autoclave temperatures.
Technical Paper

Diffusion Limited Supercritical Water Oxidation (SCWO) in Microgravity Environments

2006-07-17
2006-01-2132
Tests designed to quantify the gravitational effects on thermal mixing and reactant injection in a Supercritical Water Oxidation (SCWO) reactor have recently been performed in the Zero Gravity Facility (ZGF) at NASA's Glenn Research Center. An artificial waste stream, comprising aqueous mixtures of methanol, was pressurized to approximately 250 atm and then heated to 450°C. After uniform temperatures in the reactor were verified, a controlled injection of air was initiated through a specially designed injector to simulate diffusion limited reactions typical in most continuous flow reactors. Results from a thermal mapping of the reaction zone in both 1-g and 0-g environments are compared. Additionally, results of a numerical model of the test configuration are presented to illustrate first order effects on reactant mixing and thermal transport in the absence of gravity.
Technical Paper

Fluid Dynamics Assessment of the VPCAR Water Recovery System in Partial and Microgravity

2006-07-17
2006-01-2131
The Vapor Phase Catalytic Ammonia Removal (VPCAR) system is being developed to recycle water for future NASA Exploration Missions. Testing was recently conducted on NASA's C-9B Reduced Gravity Aircraft to determine the microgravity performance of a key component of the VPCAR water recovery system. Six flights were conducted to evaluate the fluid dynamics of the Wiped-Film Rotating Disk (WFRD) distillation component of the VPCAR system in microgravity, focusing on the water delivery method. The experiments utilized a simplified system to study the process of forming a thin film on a disk similar to that in the evaporator section of VPCAR. Fluid issues are present with the current configuration, and the initial alternative configurations were only partial successful in microgravity operation. The underlying causes of these issues are understood, and new alternatives are being designed to rectify the problems.
Technical Paper

Gravity Effects on Premixed and Diffusion Limited Supercritical Water Oxidation

2005-07-11
2005-01-3036
Supercritical water oxidation (SCWO) may become an attractive technology for processing solid and liquid wastes for long duration space and extraterrestrial planetary missions. Gravitational influences on the operation of SCWO reactors are discussed in the context of key dimensionless parameters for two general modes of operation: a “premixed” mode, where the reactants are brought to supercritical temperatures and pressures simultaneously, and a “diffusion limited” mode, where one of the reactants (typically the oxidizer) is injected into the reactor after the bulk fluid is raised to supercritical temperatures and pressures. An experimental facility for testing the gravitational influences on a SCWO reactor is then discussed.
Technical Paper

Water Injection: Disruptive Technology1 to Reduce Airplane Emissions and Maintenance Costs

2004-11-02
2004-01-3108
Water injection is an old aviation technology that was previously used to generate increased engine power during takeoff. If water injection were now to be used without increasing thrust, it could result in large reductions in takeoff NOx emissions and would most likely enable longer engine life and reduced operator costs. Due to the cooling action of evaporating water, a large temperature reduction will be experienced at the point where the water is injected into the engine. This could improve combustion emissions, such as temperature-sensitive NOx, and help reduce temperatures throughout the turbine section of the engine. The two current preferred methods of water injection are: (1) direct injection into the combustor, and (2) misting of the conditioned water before the engine's compressor. Combustor injection could achieve up to 90% NOx reduction and offer few implementation challenges as it has been used in aero-derivative industrial engines for over 30 years.
Technical Paper

Measurement of Trace Water Vapor in a Carbon Dioxide Removal Assembly Product Stream

2004-07-19
2004-01-2444
The International Space Station Carbon Dioxide Removal Assembly (CDRA) uses regenerable adsorption technology to remove carbon dioxide (CO2) from cabin air. CO2 product water vapor measurements from a CDRA test bed unit at the NASA Marshall Space Flight Center were made using a tunable infrared diode laser differential absorption spectrometer (TILDAS) provided by NASA Glenn Research Center. The TILDAS instrument exceeded all the test specifications, including sensitivity, dynamic range, time response, and unattended operation. During the CO2 desorption phase, water vapor concentrations as low as 5 ppmv were observed near the peak of CO2 evolution, rising to levels of ∼40 ppmv at the end of a cycle. Periods of high water concentration (>100 ppmv) were detected and shown to be caused by an experimental artifact.
Technical Paper

Statistical Process Control and Analysis on the Water Content Measurements in NASA Glenn’s Icing Research Tunnel

2023-06-15
2023-01-1413
The Icing Research Tunnel at NASA Glenn follows the recommended practice for calibration outlined in SAE’s ARP5905. The calibration team has followed the schedule of a full calibration every five years with a check calibration done every six months following. The liquid water content of the IRT has maintained stability within the stated specifications of variation within +/- 10% of the curve fit equation generated from calibration data. Using past measurements and data trends, IRT characterization engineers wanted to develop methods for the ability to know when data were not within variation. Trends can be observed in the liquid water content measurement process by constructing statistical process control charts. This paper describes data processing procedures for the Multi-Element Sensor in the IRT, including collision efficiency corrections, canonical correlation analysis, process for rejection of data, and construction of control charts.
Technical Paper

Aircraft In Situ Validation of Hydrometeors and Icing Conditions Inferred by Ground-based NEXRAD Polarimetric Radar

2015-06-15
2015-01-2152
MIT Lincoln Laboratory is tasked by the U.S. Federal Aviation Administration to investigate the use of the NEXRAD polarimetric radars* for the remote sensing of icing conditions hazardous to aircraft. A critical aspect of the investigation concerns validation that has relied upon commercial airline icing pilot reports and a dedicated campaign of in situ flights in winter storms. During the month of February in 2012 and 2013, the Convair-580 aircraft operated by the National Research Council of Canada was used for in situ validation of snowstorm characteristics under simultaneous observation by NEXRAD radars in Cleveland, Ohio and Buffalo, New York. The most anisotropic and easily distinguished winter targets to dual pol radar are ice crystals.
Technical Paper

Predicted Ice Shape Formations on a Boundary Layer Ingesting Engine Inlet

2019-06-10
2019-01-2025
Computational ice shapes were generated on the boundary layer ingesting engine nacelle of the D8 Double Bubble aircraft. The computations were generated using LEWICE3D, a well-known CFD icing post processor. A 50-bin global drop diameter discretization was used to capture the collection efficiency due to the direct impingement of water onto the engine nacelle. These discrete results were superposed in a weighted fashion to generate six drop size distributions that span the Appendix C and O regimes. Due to the presence of upstream geometries, i.e. the fuselage nose, the trajectories of the water drops are highly complex. Since the ice shapes are significantly correlated with the collection efficiency, the upstream fuselage nose has a significant impact on the ice accretion on the engine nacelle. These complex trajectories are caused by the ballistic nature of the particles and are thus exacerbated as particle size increases.
Technical Paper

Summary of the High Ice Water Content (HIWC) RADAR Flight Campaigns

2019-06-10
2019-01-2027
NASA and the FAA conducted two flight campaigns to quantify onboard weather radar measurements with in-situ measurements of high concentrations of ice crystals found in deep convective storms. The ultimate goal of this research was to improve the understanding of high ice water content (HIWC) and develop onboard weather radar processing techniques to detect regions of HIWC ahead of an aircraft to enable tactical avoidance of the potentially hazardous conditions. Both HIWC RADAR campaigns utilized the NASA DC-8 Airborne Science Laboratory equipped with a Honeywell RDR-4000 weather radar and in-situ microphysical instruments to characterize the ice crystal clouds. The purpose of this paper is to summarize how these campaigns were conducted and highlight key results. The first campaign was conducted in August 2015 with a base of operations in Ft. Lauderdale, Florida.
X