Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Further Evaluation of Scaling Methods for Rotorcraft Icing

2011-06-13
2011-38-0083
The paper will present experimental results from two recent icing tests in the NASA Glenn Icing Research Tunnel (IRT). The first test, conducted in February 2009, was to evaluate the current recommended scaling methods for fixed wing on representative rotor airfoils at fixed angle of attack. For this test, scaling was based on the modified Ruff method with scale velocity determined by constant Weber number and water film Weber number. Models were un-swept NACA 0012 wing sections. The reference model had a chord of 91.4 cm and scale model had a chord of 35.6 cm. Reference tests were conducted with velocity of 100 kt (52 m/s), droplet medium volume diameter (MVD) 195 μm, and stagnation-point freezing fractions of 0.3 and 0.5 at angle of attack of 5° and 7°. It was shown that good ice shape scaling was achieved with constant Weber number for NACA 0012 airfoils with angle of attack up to 7°.
Technical Paper

Engine Icing Modeling and Simulation (Part 2): Performance Simulation of Engine Rollback Phenomena

2011-06-13
2011-38-0026
Ice buildup in the compressor section of a commercial aircraft gas turbine engine can cause a number of engine failures. One of these failure modes is known as engine rollback: an uncommanded decrease in thrust accompanied by a decrease in fan speed and an increase in turbine temperature. This paper describes the development of a model which simulates the system level impact of engine icing using the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k). When an ice blockage is added to C-MAPSS40k, the control system responds in a manner similar to that of an actual engine, and, in cases with severe blockage, an engine rollback is observed. Using this capability to simulate engine rollback, a proof-of-concept detection scheme is developed and tested using only typical engine sensors.
Technical Paper

A CFD Approach for Predicting 3D Ice Accretion on Aircraft

2011-06-13
2011-38-0044
In this work, a newly developed iced-aircraft modeling tool is applied to wings, engine inlets, and helicopter rotors. The tool is based on a multiscale-physics, unstructured finite-volume CFD approach and is applicable to general purpose aircraft icing applications. The present approach combines an Eulerian-based droplet-trajectory solver that is loosely coupled, in a time-accurate manner, to a surface-film and ice-evolution model. The goal of the model is to improve the fidelity of ice accretion modeling on dynamic geometries and for three-dimensional ice shapes typical of helicopter rotors. The numerical formulation is discussed and presented alongside 2D and 3D static validation cases, and dynamic helicopter rotors. The present results display good validation for predicting ice shape on a variety of geometries, and a strong initial capability of modeling ice forming on helicopters in forward flight.
Technical Paper

Progress in Rotorcraft Icing Computational Tool Development

2015-06-15
2015-01-2088
The formation of ice over lifting surfaces can affect aerodynamic performance. In the case of helicopters, this loss in lift and the increase in sectional drag forces will have a dramatic effect on vehicle performance. The ability to predict ice accumulation and the resulting degradation in rotor performance is essential to determine the limitations of rotorcraft in icing encounters. The consequences of underestimating performance degradation can be serious and so it is important to produce accurate predictions, particularly for severe icing conditions. The simulation of rotorcraft ice accretion is a challenging multidisciplinary problem that until recently has lagged in development over its counterparts in the fixed wing community. But now, several approaches for the robust coupling of a computational fluid dynamics code, a rotorcraft structural dynamics code and an ice accretion code have been demonstrated.
Technical Paper

Initial Results from Radiometer and Polarimetric Radar-based Icing Algorithms Compared to In-situ Data

2015-06-15
2015-01-2153
In early 2015, a field campaign was conducted at the NASA Glenn Research Center in Cleveland, Ohio, USA. The purpose of the campaign is to test several prototype algorithms meant to detect the location and severity of in-flight icing (or icing aloft, as opposed to ground icing) within the terminal airspace. Terminal airspace for this project is currently defined as within 25 kilometers horizontal distance of the terminal, which in this instance is Hopkins International Airport in Cleveland. Two new and improved algorithms that utilize ground-based remote sensing instrumentation have been developed and were operated during the field campaign. The first is the ‘NASA Icing Remote Sensing System’, or NIRSS. The second algorithm is the ‘Radar Icing Algorithm’, or RadIA.
Technical Paper

Application of Extended Messinger Models to Complex Geometries

2020-03-10
2020-01-0022
Since, ice accretion can significantly degrade the performance and the stability of an airborne vehicle, it is imperative to be able to model it accurately. While ice accretion studies have been performed on airplane wings and helicopter blades in abundance, there are few that attempt to model the process on more complex geometries such as fuselages. This paper proposes a methodology that extends an existing in-house Extended Messinger solver to complex geometries by introducing the capability to work with unstructured grids and carry out spatial surface streamwise marching. For the work presented here commercial solvers such as STAR-CCM+ and ANSYS Fluent are used for the flow field and droplet dispersed phase computations. The ice accretion is carried out using an in-house icing solver called GT-ICE. The predictions by GT-ICE are compared to available experimental data, or to predictions by other solvers such as LEWICE and STAR-CCM+.
X