Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Aerodynamic Design Data For a Cruise-Matched High Performance Single Engine Airplane

1981-04-01
810625
Design data are presented for a class of high-performance single-engine business airplanes. The design objectives include a cruise speed of 300 knots, a cruise altitude of 10,700 m (35,000 ft), a cruise payload of six passengers (including crew and baggage), and a no-reserves cruise range of 1300 n.mi. Two unconventional aerodynamic technologies were evaluated: the individual and combined effects of cruise-matched wing loading and of a natural laminar flow airfoil were analyzed. The tradeoff data presented illustrate the ranges of wing geometries, propulsion requirements, airplane weights, and aerodynamic characteristics which are necessary to meet the design objectives. very large design and performance improvements resulted from use of the aerodynamic technologies evaluated. Is is shown that the potential exists for achieving more than 200-percent greater fuel efficiency than is achieved by current airplanes capable of similar cruise speeds, payloads, and ranges.
Technical Paper

Flight Investigation of Natural Laminar Flow on the Bellanca Skyrocket II

1983-02-01
830717
Two major concerns have inhibited the use of natural laminar flow (NLF) for viscous drag reduction on production aircraft. These are the concerns of achieveability of NLF on practical airframe surfaces, and maintainability in operating environments. Previous research in this area left a mixture of positive and negative conclusions regarding these concerns. While early (pre-1950) airframe construction methods could not achieve NLF criteria for waviness, several modern construction methods (composites for example) can achieve the required smoothness. This paper presents flight experiment data on the achieveability and maintainability of NLF on a high-performance, single-propeller, composite airplane, the Bellanca Skyrocket II. The significant contribution of laminar flow to the performance of this airplane was measured. Observations of laminar flow in the propeller slipstream are discussed, as are the effects of insect contamination on the wing.
Technical Paper

An Investigation of the Effects of the Propeller Slipstream on a Laminar Wing Boundary Layer

1985-04-01
850859
A research program is in progress to study the effects of the propeller slipstream on natural laminar flow. Flight and wind tunnel measurements of the wing boundary layer have been made using hot-film velocity sensor probes. The results show the boundary layer, at any given point, to alternate between laminar and turbulent states. This cyclic behavior is due to periodic external flow turbulence originating from the viscous wake of the propeller blades. Analytic studies show the cyclic laminar/turbulent boundary layer layer to result in a significantly lower wing section drag than a fully turbulent boundary layer. The application of natural laminar flow design philosophy yields drag reduction benefits in the slipstream affected regions of the airframe, as well as the unaffected regions.
X