Refine Your Search


Search Results

Technical Paper

Piezoelectric Actuator Configuration Optimization for Active Structural Acoustic Control in Aircraft

This paper has presented a technique for the determination of an optimal configuration of fuselage mounted piezoelectric actuators for active structural acoustic control of interior noise in aircraft. The technique has demonstrated much potential in preliminary experiments where actuators were configured to couple into the first principal component of the acoustically coupled fuselage vibration. In this test, average reductions of 6 dB at the error microphones and 4 dB at five auxiliary microphones were observed for a pure tone disturbance at the left forward engine pylon of a business jet. This disturbance was used to simulate an oscillating force due to engine unbalance.
Technical Paper

Advanced Analysis Methods and Nondestructive Inspection Technology Under Development in the NASA Airframe Structural Integrity Program

An advanced analytical methodology has been developed for predicting the residual strength of stiffened thin-sheet riveted shell structures such as those used for the fuselage of a commercial transport aircraft. The crack-tip opening angle elastic-plastic fracture criterion has been coupled to a geometric and material nonlinear finite element shell code for analyzing complex structural behavior. An automated adaptive mesh refinement capability together with global-local analysis methods have been developed to predict the behavior of fuselage structure with long cracks. This methodology is currently being experimentally verified. Advanced nondestructive inspection technology has been developed that will provide airline operators with the capability to conduct reliable and economical broad-area inspections of aircraft structures.
Technical Paper

Overview of Noise Reduction Technology in the NASA Short Haul (Civil Tiltrotor) Program

Noise is a barrier issue for penetration of civil markets by future tiltrotor aircraft. To address this issue, elements of the NASA Short Haul (Civil Tiltrotor) [SH(CT)] program are working in three different areas: noise abatement, noise reduction, and noise prediction. Noise abatement refers to modification of flight procedures to achieve quieter approaches. Noise reduction refers to innovative new rotor designs that would reduce the noise produced by a tiltrotor. Noise prediction activities are developing the tools to guide the design of future quiet tiltrotors. This paper presents an overview of SH(CT) activities in all three areas, including sample results.
Technical Paper

Status of Propeller Noise Prediction Methods for General Aviation Aircraft

This paper reviews the status of analytical and empirical propeller noise prediction methods with specific emphasis on those that are suitable for General Aviation propellers. Specifically, the paper reviews the capabilities and limitations of methods that are simple enough for ease of use by industry while providing sufficient accuracy to guide the development of new propeller designs or the modification of existing propeller driven airplanes to satisfy increased certification stringency or cabin comfort objectives.
Technical Paper

Numerical Simulation of Propulsion-Induced Aerodynamic Characteristics on a Wing-Afterbody Configuration with Thrust Vectoring

Aerodynamic effects induced from vectoring an exhaust jet are investigated using a well established thin-layer Reynolds averaged Navier-Stokes code. This multiple block code has been modified to allow for the specification of jet properties at a block face. The applicability of the resulting code for thrust vectoring applications is verified by comparing numerically and experimentally determined pressure coefficient distributions for a jet-wing afterbody configuration with a thrust-vectoring 2-D nozzle. Induced effects on the body and nearby wing from thrust vectoring are graphically illustrated.
Technical Paper

Fifty Years of Laminar Flow Flight Testing

Laminar flow flight experiments conducted over the past fifty years will be reviewed. The emphasis will be on flight testing conducted under the NASA Laminar Flow Control Program which has been directed towards the most challenging technology application- the high subsonic speed transport. The F111/TACT NLF Glove Flight Test, the F-14 Variable Sweep Transition Flight Experiment, the 757 Wing Noise Survey and NLF Glove Flight Test, the NASA Jetstar Leading Edge Flight Test Program, and the recently initiated Hybrid Laminar Flow Control Flight Experiment will be discussed. To place these recent experiences in perspective, earlier important flight tests will first be reviewed to recall the lessons learned at that time.
Technical Paper

Nonlinear Structural Crash Dynamics Analyses

Presented in this paper are the results of three nonlinear computer programs, KRASH, ACTION and DYCAST used to analyze the dynamic response of a twin-engine, low-wing airplane section subjected to a 8.38 m/s (27.5 ft/s) vertical impact velocity crash condition. This impact condition simulates the vertical sink rate in a shallow aircraft landing or takeoff accident. The three distinct analysis techniques for nonlinear dynamic response of aircraft structures are briefly examined and compared versus each other and the experimental data. The report contains brief descriptions of the three computer programs, the respective aircraft section mathematical models, pertinent data from the experimental test performed at NASA Langley, and a comparison of the analyses versus test results. Cost and accuracy comparisons between the three analyses are made to illustrate the possible uses of the different nonlinear programs and their future potential.
Technical Paper

Spin Flight Research Summary

An extensive general aviation stall/spin research program is underway at the NASA Langley Research Center. Flight tests have examined the effects of tail design, wing leading edge design, mass distribution, and minor airframe modifications on spin and recovery characteristics. Results and observations on test techniques are presented for the first airplane in the program. Configuration changes produced spins varying from easily recoverable slow, steep spins to unrecoverable, fast flat spins.
Technical Paper

Aerodynamic-Performance Planform and Camber Optimization of a Supersonic Transport Wing

This paper describes recent research in integrated aerodynamic-performance design optimization applied to a supersonic transport wing. The subsonic and supersonic aerodynamics are modeled with linear theory and the aircraft performance is evaluated by using a complete mission analysis. The goal of the optimization problem is to either maximize the aircraft range or minimize the take-off gross weight while constraining the total fuel load and approach speed. A major difficulty encountered during this study was the inability to obtain accurate derivatives of the aerodynamic models with respect to the planform shape. This work addresses this problem and provides one solution for the derivative difficulties. Additional optimization studies reveal the impact of camber design on the global optimization problem. In these studies, the plan-form optimization is first conducted on a flat plate wing and camber optimization is performed on the resulting planform.
Technical Paper

Hybrid Laminar Flow Control Applied to Advanced Turbofan Engine Nacelles

In recent years, the National Aeronautics and Space Administration (NASA) in cooperation with U.S. industry has performed flight and wind-tunnel investigations aimed at demonstrating the feasibility of obtaining significant amounts of laminar boundary-layer flow at moderate Reynolds numbers on the swept-back wings of commercial transport aircraft. Significant local drag reductions have been recorded with the use of a hybrid laminar flow control (HLFC) concept. In this paper, we address the potential application of HLFC to the external surface of an advanced, high bypass ratio turbofan engine nacelle with a wetted area which approaches 15 percent of the wing total wetted area of future commercial transports. A pressure distribution compatible with HLFC is specified and the corresponding nacelle geometry is computed utilizing a predictor/corrector design method. Linear stability calculations are conducted to provide predictions of the extent of the laminar boundary layer.
Technical Paper

Wind-Tunnel Investigation of a General Aviation Airplane Equipped With a High Aspect-Ratio, Natural-Laminar-Flow Wing

An investigation has been conducted in the Langley 30- by 60-Foot Wind Tunnel to evaluate the performance and stability and control characteristics of a full-scale general aviation airplane equipped with a natural-laminar-flow wing. The study focused on the effects of natural laminar flow and boundary layer transition, and on the effects of several wing leading-edge modifications designed to improve the stall resistance of the configuration. Force and moment data were measured over wide angle-of-attack and sideslip ranges and at Reynolds numbers from 1.4 × 106 to 2.1 × 106 based on the mean aerodynamic chord. Additional measurements were made using hot-film and sublimating-chemical techniques to determine the condition of the wing boundary layer, and wool tufts were used to study the wing stalling characteristics. The investigation showed that large regions of natural laminar flow existed on the wing which would significantly enhance the cruise performance of the configuration.
Technical Paper

Navier-Stokes Predictions of Multifunction Nozzle Flows

A two-dimensional, Navier-Stokes code developed by Imlay based on the implicit, finite-volume method of MacCormack has been applied to the prediction of the flow fields and performance of several nonaxisymmetric, convergent-divergent nozzles with and without thrust vectoring. Comparisons of predictions with experiment show that the Navier-Stokes code can accurately predict both the flow fields and performance for nonaxisymmetric nozzles where the flow is predominantly two-dimensional and at nozzle pressure ratios at or above the design values. Discrepancies between predictions and experiment are noted at lower nozzle pressure ratios where separation typically occurs in portions of the nozzle. The overall trends versus parameters such as nozzle pressure ratio, flap angle, and vector angle were generally predicted correctly.
Technical Paper

Theoretical Investigations, and Correlative Studies for NLF, HLFC, and LFC Swept Wings at Subsonic, Transonic and Supersonic Speeds

The results of theory/experiment correlative studies at subsonic and supersonic Mach numbers are presented in this paper. These studies were conducted by using theoretical design tools consisting of the Method of Characteristics, newly-developed integral compressible boundary-layer methods for infinitely swept wings, namely, laminar boundary layer with suction, prediction of neutral instability and transition due to amplification of Tollmien-Schlichting (T.S.) waves and crossflow (C.F.), and a method for predicting separating turbulent boundary-layer characteristics. Results of correlations have indicated that the present integral boundary layer methods are quite successful in predicting transition phenomenon both at transonic and supersonic speeds.
Technical Paper

Flight Test Results for Several Light, Canard-Configured Airplanes

Brief flight evaluations of two different, light, composite constructed, canard and winglet configured airplanes were performed to assess their handling qualities; one airplane was a single engine, pusher design and the other a twin engine, push-pull configuration. An emphasis was placed on the slow speed/high angle of attack region for both airplanes and on the engine-out regime for the twin. Mission suitability assessment included cockpit and control layout, ground and airborne handling qualities, and turbulence response. Very limited performance data was taken. Stall/spin tests and the effects of laminar flow loss on performance and handling qualities were assessed on an extended range, single engine pusher design.
Technical Paper

Supersonic Jet Plume Interaction with a Flat Plate

A model scaled test apparatus has been designed and assembled to simulate supersonic plume/aircraft structure Interaction for the cruise configuration. Preliminary results have been obtained to demonstrate the severity of the associated acoustic fatigue loads. Two rectangular supersonic nozzles with aspect ratios of 7 and 7.7 ware fabricated with internal convergent-divergent contours designed for Mach numbers of 1.35 and 2.00. A large flat plate was located beneath each nozzle at various nozzle height separations. The plate was instrumented to measure surface dynamic pressure and mean wall temperature. Phase averaged schliern measurements revealed the presence of high intensity acoustic emission from the supersonic plume above the plate and directed upstream. This radiation can be associated with the shock noise generation mechanism. Narrow band spectra of wall dynamic pressure show spectral peaks with amplitude levels as high as 1 PSI.
Technical Paper

Light Aircraft Crash Safety Program

The Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA) have joined forces in a General Aviation Crashworthiness Program. This paper describes the research and development tasks of the program which are the responsibility of NASA. NASA is embarked upon research and development tasks aimed at providing the general aviation industry with a reliable crashworthy airframe design technology. The goals of the NASA program are: reliable analytical techniques for predicting the nonlinear behavior of structures; significant design improvements of airframes; and simulated full-scale crash test data. The analytical tools will include both simplified procedures for estimating energy absorption characteristics and more complex computer programs for analysis of general airframe structures under crash loading conditions.
Technical Paper


This paper discusses a project for adapting advanced technology, much of it borrowed from the jet transport, to general aviation design practice. The NASA funded portion of the work began in 1969 at the University of Kansas and resulted in a smaller, experimental wing with spoilers and powerful flap systems for a Cessna Cardinal airplane. The objective was to obtain increased cruise performance and improved ride quality while maintaining the take-off and landing speeds of the unmodified airplane. Some flight data and research pilot comments are presented. The project was expanded in 1972 to include a light twin-engine airplane. For the twin there was the added incentive of a potential increase in single-engine climb performance. The expanded project is a joint effort involving the University of Kansas, Piper Aircraft Company, Robertson Aircraft Company, and Wichita State University. The use of a new high-lift Whitcomb airfoil is planned for both the wing and the propellers.
Technical Paper

Development of Airframe Design Technology for Crashworthiness

This paper describes the NASA portion of a joint FAA-NASA General Aviation Crashworthiness Program leading to the development of improved crashworthiness design technology. The objectives of the program are to develop analytical technology for predicting crashworthiness of structures, provide design improvements, and perform full-scale crash tests. The analytical techniques which are being developed both in-house and under contract are described and typical results from these analytical programs are shown. In addition, the full-scale testing facility and test program are discussed.
Technical Paper

Interior Noise Analysis and Control for Light Aircraft

This paper describes experimental and analytical studies of the interior noise of twin-engine, propeller-driven, light aircraft. Experimental results indicate that interior noise levels due to propeller noise can be reduced by reduction of engine rpm at constant airspeed (about 3 dB), by synchronization of the twin engines/propellers (up to 12 dB), and by increasing the distances from propeller tip to fuselage. The analytical model described uses modal methods and incorporates the flat-sided geometrical and skin-stringer structural features of light aircraft. Initial results show good agreement with measured noise transmitted into a rectangular box through a flat panel.
Technical Paper

Airframe Technology for Energy Efficient Transport Aircraft

Fuel costs comprise a major portion of air transport operating costs. Thus, energy efficiency is an essential design goal for future transport aircraft. Advanced composite structures, advanced wing geometries, and active control systems all promise substantial benefits in fuel efficiency and direct operating cost for derivative and new aircraft introduced by 1985. Technology for maintenance of a laminar boundary layer in cruise offers great benefits in fuel efficiency and direct operating cost and may be ready for application to transports introduced in the 1990's. NASA and the air transport industry are cooperating in a comprehensive Aircraft Energy Efficiency Program to expedite the introduction of these advanced technologies into production aircraft.