Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

In-Flight Off-Surface Flow Visualization Using Infrared Imaging

1991-04-01
911006
A flight test investigation was conducted to evaluate an infrared (IR) imaging technique to visualize off-surface flow phenomena. A single-engine, general-aviation airplane was equipped with an IR imaging system that viewed the region around the left wingtip. Vortical flow at the wingtip was seeded with sulfur hexafluoride, a gas with strong infrared absorbing and emitting characteristics. Different terrain and sky backgrounds were evaluated for their effect on IR images of vortical flow. The best IR images were obtained with a clear sky background. The results of the investigation indicate that IR flow visualization compliments existing smoke generator methods for off-surface flow visualization.
Technical Paper

Flight Tests Using Data Link for Air Traffic Control and Weather Information Exchange

1990-09-01
901888
Message exchange for air traffic control (ATC) purposes via data link offers the potential benefits of increasing the airspace system safety and efficiency. This is accomplished by reducing communication errors and relieving the overloaded ATC radio frequencies, which hamper efficient message exchanges during peak traffic periods in many busy terminal areas. However, the many uses and advantages of data link create additional questions concerning the interface among the human-users and the cockpit and ground systems. A flight test was conducted in the NASA Langley B-737 airplane to contrast flight operations using current voice communications with the use of data link for transmitting both strategic and tactical ATC clearances during a typical commercial airline flight from takeoff to landing. Commercial airplane pilots were used as test subjects.
Technical Paper

Leading-Edge Design for improved Spin Resistance of Wings Incorporating Conventional and Advanced Airfoils

1985-10-01
851816
Discontinuous wing leading-edge droop designs have been evaluated as a means of modifying wing autorotative characteristics and thus improving airplane spin resistance. Addition of a discontinuous outboard wing leading-edge droop to three typical light airplanes having NACA 6-series wing sections produced significant improvements in stall characteristics and spin resistance. Wind tunnel tests of two wings having advanced natural laminar flow airfoil sections indicated that a discontinuous leading-edge droop can delay the onset of autorotation at high angles of attack without adversely affecting the development of laminar flow at cruise angles of attack.
Technical Paper

Laser Velocimeter Measurements of the Flow Fields Around Single- and Counter-Rotation Propeller Models

1985-04-01
850870
A two-component LV system was used to make detailed measurements of the flowfield around both a single-rotation and a counter-rotation propeller/nacelle. The conditions measured for the single-rotation tractor configuration include two different blade angles and two propeller advance ratios, and for the counter-rotation propeller configuration include both pusher and tractor mounts. The measurements show the increasing slipstream velocities and contraction with increasing blade angle and with decreasing advance ratio. Data for the counter-rotation system show that the aft propeller turns the flow in the opposite direction from the front propeller. Additionally, the LV system was used as a diagnostic tool to provide data to explain the large side force measured on the propeller/nacelle at angle-of-attack.
Technical Paper

Low-Speed Aerodynamic Characteristics of a Powered Nasp-Like Configuration in Ground Effect

1989-09-01
892312
An investigation was conducted in the Langley 14- By 22-Foot Subsonic Tunnel to determine the low-speed aerodynamic characteristics of a powered generic NASP-like configuration in ground effect. The model was a simplified configuration consisting of a triangular wedge forebody, a rectangular mid-section which housed the propulsion simulation system, and a rectangular wedge aftbody. Additional model components included a delta wing, exhaust flow deflectors, and aftbody fences. Six-component force and moment data were obtained over an angle of attack range from −4° to 18° while model height above the tunnel floor was varied from 1/4 inch to 6 feet. Variations in freestream dynamic pressure, from 10 psf to 80 psf, and engine ejector pressure yielded a range of thrust coefficients from 0 to 0.8. Flow visualization was obtained by injecting water into the engine simulator inlets and using a laser light sheet to illuminate the resulting exhaust flow.
Technical Paper

Stability Characteristics of a Conical Aerospace Plane Concept

1989-09-01
892313
Wind tunnel investigations were conducted as part of an effort to develop a stability and control database for an aerospace plane concept across a broad range of Mach numbers. The generic conical design used in these studies represents one of a number of concepts being studied for this class of vehicle. The baseline configuration incorporated a 5° cone forebody, a 75.96° delta wing, a 16°leading-edge sweep deployable canard and a centerline vertical tail. Tests were conducted in the following NASA-Langley facilities spanning a Mach range of 0.1 to 6:30- by 60-Foot Tunnel,14- by 22-Foot Subsonic Tunnel, Low Turbulence Pressure Tunnel, National Transonic Facility, Unitary Plan Wind Tunnel, and the 20 Inch Mach 6 Tunnel. Data were collected for a number of model geometry variations and test conditions in each facility. This paper highlights some of the key results of these investigations pertinent to stability considerations about all three axes.
Technical Paper

Theoretical Investigation for the Effects of Sweep, Leading-Edge Geometry, and Spanwise Pressure Gradients on Transition and Wave Drag at Transonic, and Supersonic Speed with Experimental Correlations

1988-10-01
881484
The results of a design study of a Hybrid Laminar Flow Control (HLFC) wing at transonic speed and correlative studies for finite, swept supersonic wings are discussed in this paper. Transonic HLFC wing was designed such as to obtain laminar laminar flow on the the wing upper surface for X/C of 0.6 and with suction applied from the leading edge to 60% of the chord and with suction applied from just aft of the leading edge to twenty-five percent of the chord. New theoretical methods have been recently developed for predicting pressure distributions, supersonic wave drag and transition location for finite swept wings at transonic and supersonic Mach number conditions and are illustrative computations are given. Results for laminar and turbulent boundary-layer parameters consisting of the displacement effects and skin friction drag are also presented.
Technical Paper

Wind-Tunnel Investigation of the Forebody Aerodynamics of a Vortex-Lift Fighter Configuration at High Angles of Attack

1988-10-01
881419
Results of a recent low-speed wind-tunnel investigation conducted to define the forebody flow on a 16% scale model of the NASA High Angle-of-Attack Research Vehicle (HARV), an F-18 configuration, are presented with analysis. Measurements include force and moment data, oil-flow visualizations, and surface pressure data taken at angles of attack near and above maximum lift (36° to 52°) at a Reynolds number of one million based on mean aerodynamic chord. The results presented identify the key flow-field features on the forebody including the wing-body strake.
Technical Paper

A Fluid Flow Analysis for Convective Thermal Control of Flight Experiments

1989-07-01
891564
A method for thermally analyzing convectively cooled flight experiments is presented in this paper. A three-dimensional fluid flow analysis code was used to optimize air circulation patterns and predict air velocities in thermally critical areas. A comparison between a fan flow analysis using this code and the performance characteristics of a typical isothermal free jet was made. The velocity profiles and radial distribution agree well for downstream mixing of the flow. Predicted air velocities from the fluid analysis were used to calculate forced convection coefficients for the flight experiment. These convection coefficients were used in a finite difference thermal analysis code to describe the response of air temperature and heat loss for the LIDAR Atmospheric Sensing Experiment (LASE) during transient flight profiles. The performance of the existing thermal design is described and the analytical techniques used to arrive at this design are presented.
Technical Paper

Tollmien-Schlschfing Instabilities in Laminar Flow In-Flight Detection of

1987-09-01
871016
The ability of modern airplane surfaces to achieve laminar flow over a wide range of subsonic and transonic cruise flight conditions has been well-documented in recent years. Current laminar flow flight research conducted by NASA explores the limits of practical applications of laminar flow drag reduction technology. Past laminar flow flight research focused on measurements of transition location, without exploring the dominant instability(ies) responsible for initiating the transition process. Today, it is important to understand the specific causes(s) of laminar to turbulent boundary layer transition. This paper presents results of research on advanced devices for measuring the phenomenon of viscous Tollmien-Schlichting (T-S) instability in the flight environment. In previous flight tests, T-S instability could only be inferred from theoretical calculations based on measured pressure distributions.
Technical Paper

Thermal Control of the Lidar In-Space Technology Experiment

1987-07-01
871443
The LIDAR In-Space Technology Experiment (LITE) will employ LIDAR techniques to study the atmosphere from space. The LITE instrument will be flown in the Space Shuttle Payload Bay with an earth directed orientation. The experiment thermal control incorporates both active and passive techniques. The Laser Transmitter Module (LTM) and the System Electronics will be actively cooled through the shuttle pallet coolant loop. The Receiver System and Experiment Platform will be passively controlled through the use of insulation and component surface properties. This paper explains the thermal control techniques used and the analysis results, with primary focus on the Receiver System.
Technical Paper

Unique Research Challenges for High-Speed Civil Transports

1987-11-13
872400
Market growth and technological advances are expected to lead to a new generation of long-range transports that cruise at supersonic or even hypersonic speeds. Current NASA/industry studies will define the market windows in terms of time frame, Mach number, and technology requirements for these aircraft. Initial results indicate that, for the years 2000 to 2020, economically attractive vehicles could have a cruise speed up to Mach 6. The resulting research challenges are unique. They must be met with new technologies that will produce commercially successful and environmentally compatible vehicles where none have existed. Several important areas of research have been identified for the high-speed civil transports. Among these are sonic boom, takeoff noise, thermal management, lightweight structures with long life, unique propulsion concepts, unconventional fuels, and supersonic laminar flow.
Technical Paper

Large Space Structures-Structural Concepts and Materials

1987-11-13
872429
Large space structures will be a key element of our future space activities. They will include spacecraft such as the planned Space Station and large antenna/reflector structures for communications and observations. These large structures will exceed 100 m in length or 30 m in diameter. Concepts for construction of these spacecraft on orbit and their materials of construction provide some unique research challenges. This paper will provide an overview of our research in space construction of large structures including erectable and deployable concepts. Also, an approach to automated, on-orbit construction will be presented. Materials research for space applications focuses on high stiffness, low expansion composite materials that provide adequate durability in the space environment. The status of these materials research activities will be discussed.
Technical Paper

Boundary-Layer Control for Drag Reduction

1987-11-13
872434
Although the number of possible applications of boundary-layer control is large, a discussion is given only of those that have received the most attention recently at NASA Langley Research Center to improve airfoil drag characteristics. This research concerns stabilizing the laminar boundary layer through geometric shaping (natural laminar flow, NLF) and active control involving the removal of a portion of the laminar boundary layer (laminar flow control, LFC) either through discrete slots or a perforated surface. At low Reynolds numbers, a combination of shaping and forced transition has been used to achieve the desired run of laminar flow and control of laminar separation. In the design of both natural laminar flow and laminar flow control airfoils and wings, boundary layer stability codes play an important role. A discussion of some recent stability calculations using both incompressible and compressible codes is given.
Technical Paper

Aircraft Radial-Belted Tire Evaluation

1990-09-01
901913
An overview is given of the ongoing joint NASA/FAA/Industry Surface Traction And Radial Tire (START) Program being conducted at NASA Langley's Aircraft Landing Dynamics Facility (ALDF). The START Program involves tests using three different tire sizes to evaluate tire rolling resistance, braking, and cornering performance throughout the aircraft ground operational speed range for both dry and wet runway surfaces. Preliminary results from recent 40 x 14 size bias-ply, radial-belted, and H-type aircraft tire tests are discussed. The paper concludes with a summary of the current program status and planned ALDF test schedule.
X