Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Solid Polymer Electrolyte Oxygen Generator Assembly Life Testing at MSFC - The First Year

1997-07-01
972376
A two year test program has been initiated to evaluate the effects of extended duration operation on a solid polymer electrolyte Oxygen Generator Assembly (OGA); in particular the cell stack and membrane phase separators. As part of this test program, the OGA was integrated into the Marshall Space Flight Center (MSFC) Water Recovery Test (WRT) Stage 10, a six month test, to use reclaimed water directly from the water processor product water storage tanks. This paper will document results encountered and evaluated thus far in the life testing program.
Technical Paper

Development of a Direct Drive Hall Effect Thruster System

2002-10-29
2002-01-3212
A three-year program to develop a Direct Drive Hall Effect Thruster (D2HET) system began 15 months ago as part of the NASA Advanced Cross-Enterprise Technology Development initiative. The system is expected to reduce significantly the power processing, complexity, weight, and cost over conventional low-voltage systems. The D2HET will employ solar arrays that operate at voltages greater than 300V, and will be an enabling technology for affordable planetary exploration. It will also be a stepping-stone in the production of the next generation of power systems for Earth orbiting satellites. This paper provides a general overview of the program and reports the first year's findings from both theoretical and experimental components of the program.
Technical Paper

Spacelab Carrier Complement Thermal Design and Performance

1992-07-01
921278
Spacelab mission thermal integration is one of many activities performed at the NASA Marshall Space Flight Center (MSFC). The Spacelab carrier system has been expanded from the original module/pallet system. Thermodynamics and heat transfer as well as fluid mechanics and fluid dynamics are the support areas discussed here. This support incorporates preflight mission analysis in conjunction with real time mission support and postflight mission analysis. This paper summarizes these activities for the Spacelab carrier complement, citing some of the more challenging thermal control designs for which the Center is and has been responsible. Technology advancements, coupled with the ever increasing needs of the payload community and the desire for flexibility to manifest several distinct payload elements on a single mission, has aided in the evolution of a more diverse Spacelab carrier complement.
Technical Paper

Hubble Space Telescope Nickel-Hydrogen Battery and Cell Testing - An Update

1992-08-03
929089
Nickel-hydrogen (Ni-H2) technology has only recently been utilized in low earth orbit (LEO) applications. The Hubble Space Telescope (HST) program, over the past five years, played a key role in developing this application. The HST not only became the first reported, nonexperimental program to fly Ni-H2 batteries in a LEO application, but funded numerous, ongoing tests that served to validate this usage. The Marshall Space Flight Center (MSFC) has been testing HST Ni-H2 batteries and cells for over three years. The major tests include a 6-battery system (SBS) test and a single 22-cell battery (FSB) test. The SBS test has been operating for 34 months and completed approximately 15,200 cycles. The performance of the cells and batteries in this test is nominal. Currently, the batteries are operating at an average end-of-charge (EOC) pressure that indicates an average capacity of approximately 79 ampere-hours (Ah).
Technical Paper

A Description and Comparison of U.S. and Russian Urine Processing Hardware for the International Space Station

1994-06-01
941251
The Russian space program has maintained crews on long duration space flights nearly continuously over the past two decades. As a result, a strong emphasis has been placed on the development of regenerative life support systems. One of these systems is a urine processor which has been operating on-orbit since 1990. The U. S has also been developing urine processing systems to reclaim water from urine over the past twenty years. This paper will describe the two different technologies used for urine processing for long-term human presence in space and will compare the operating characteristics of the two systems.
Technical Paper

A Study on the Role of Human Testing of Life Support Systems

1996-07-01
961474
The appropriate role of human testing in life support systems design has been a key concern for human spacecraft development. This discussion intensified over the past one and a half years as the International Space Station (ISS) evaluated the risk associated with the baseline program while conducting cost and schedule convergence activities. The activity was carried from the traditional top-level discussion to evaluation of the specific Space Station Life Support concerns associated with human interaction, weighed against cost impacts. This paper details the results of this activity, providing the rationale for the present ISS approach.
Technical Paper

A Discussion of Issues Affecting the Transition of NASA’s Standard Offgassing Test Method to an International Test Method

1999-07-12
1999-01-2054
The toxicity test method utilized by The National Aeronautics and Space Administration (NASA) is being modified to create an International Standard. The method, NHB 8060.1 C, Test 7, is utilized to determine the identity and quantity of offgassed products from materials and hardware. This paper focuses on the resolution of technical issues faced during its transition from a US specific document to an International Standard. NASA, the European Space Agency (ESA) and the National Space Development Agency of Japan (NASDA) have been very active in bringing ISO 14624-3 through several revisions to its current form. It is anticipated that the document could be an international standard by the end of 1999, with the full support of NASA, ESA, NASDA, and the other national programs represented in Working Group 1.
Technical Paper

Vapor Compression Distillation Urine Processor Lessons Learned from Development and Life Testing

1999-07-12
1999-01-1954
Vapor Compression Distillation (VCD) is the chosen technology for urine processing aboard the International Space Station (ISS). Development and life testing over the past several years have brought to the forefront problems and solutions for the VCD technology. Testing between 1992 and 1998 has been instrumental in developing estimates of hardware life and reliability. It has also helped improve the hardware design in ways that either correct existing problems or enhance the existing design of the hardware. The testing has increased the confidence in the VCD technology and reduced technical and programmatic risks. This paper summarizes the test results and changes that have been made to the VCD design.
Technical Paper

ISS Internal Active Thermal Control System (IATCS) Coolant Remediation Project - 2006 Update

2006-07-17
2006-01-2161
The IATCS coolant has experienced a number of anomalies in the time since the US Lab was first activated on Flight 5A in February 2001. These have included: 1) a decrease in coolant pH, 2) increases in inorganic carbon, 3) a reduction in phosphate concentration, 4) an increase in dissolved nickel and precipitation of nickel salts, and 5) increases in microbial concentration. These anomalies represent some risk to the system, have been implicated in some hardware failures and are suspect in others. The ISS program has conducted extensive investigations of the causes and effects of these anomalies and has developed a comprehensive program to remediate the coolant chemistry of the on-orbit system as well as provide a robust and compatible coolant solution for the hardware yet to be delivered.
X