Refine Your Search

Topic

Author

Search Results

Technical Paper

International Space Station Environmental Control and Life Support System Technology Evolution

1996-07-01
961475
The baseline Environmental Control and Life Support System (ECLSS) for the International Space Station (ISS) includes regenerative and non-regenerative technologies for Temperature and Humidity Control (THC), Atmosphere Control and Supply (ACS), Fire Detection and Suppression (FDS), Atmosphere Revitalization (AR), Water Recovery and Management (WRM), Waste Management (WM), and Vacuum System (VS). The U.S. Lab module will contain complete THC and ACS subsystems and an open loop AR including a Carbon Dioxide Removal Assembly (CDRA), Trace Contaminant Control Subassembly (TCCS), and a Major Constituent Analyzer (MCA). An Oxygen Generation Assembly (OGA) is added with the U. S. Hab module, along with the WRM and WM subsystems. The final baseline configuration is a closed water loop and partially closed atmosphere loop and represents the best available mature technologies.
Technical Paper

Mir Space Station Trace Contaminant Assessment

1996-07-01
961472
Eight SUMMA passivated sampling canisters were shipped to the Russian Space Station Mir in February of 1995 to assess ambient trace contaminant concentrations. Prior to flight, the canisters were injected with isotope labeled surrogates and internal standards to measure potential negative impacts on measurement accuracy caused by the trip environmental conditions of launch and return. Three duplicate canister samples were collected in parallel with Russian sorbent samples to acquire data for comparative purposes. A total of 32 target and 13 non-target volatile compounds were detected in each of the samples analyzed. The concentrations of the compounds remained relatively consistent for the three sampling events, and all of the concentrations of detected contaminants were well below both US and Russian Spacecraft Maximum Allowable Concentrations (SMAC). Five different fluorocarbons were consistently detected at relatively high concentrations.
Technical Paper

Space Station Regenerative Life Support Risk Mitigation Through Microgravity Flight Experiment Demonstrations

1996-07-01
961513
Flight experiments are being developed to assess the microgravity performance of U.S.-developed physical/chemical life support technologies baselined for operation on the International Space Station (ISS). The experiments will take advantage of flight opportunities available on the Space Shuttle prior to the production of ISS flight systems. Early microgravity demonstrations of these technologies will allow the ISS life support system to be developed from flight-proven processes, thereby reducing programmatic risks and enhancing overall life support efficiencies. This paper will provide an overview of the life support flight experiment program.
Technical Paper

Summary of Resources for the International Space Station Environmental Control and Life Support System

1997-07-01
972332
The assembly complete Environmental Control and Life Support (ECLS) system for the International Space Station (ISS) will consist of components and subsystems in both the U.S. and International partner elements which together will perform the functions of Temperature and Humidity Control (THC), Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Water Recovery and Management (WRM), Waste Management (WM), Fire Detection and Suppression (FDS), and Vacuum System (VS) for the station. Due to limited resources available on ISS, detailed attention is given to minimizing and tracking all resources associated with all systems, beginning with estimates during the hardware development phase through measured actuals when flight hardware is built and delivered. A comprehensive summary of resources consumed by the U.S.
Technical Paper

Solid Polymer Electrolyte Oxygen Generator Assembly Life Testing at MSFC - The First Year

1997-07-01
972376
A two year test program has been initiated to evaluate the effects of extended duration operation on a solid polymer electrolyte Oxygen Generator Assembly (OGA); in particular the cell stack and membrane phase separators. As part of this test program, the OGA was integrated into the Marshall Space Flight Center (MSFC) Water Recovery Test (WRT) Stage 10, a six month test, to use reclaimed water directly from the water processor product water storage tanks. This paper will document results encountered and evaluated thus far in the life testing program.
Technical Paper

Phase III Integrated Water Recovery Testing at MSFC: International Space Station Recipient Mode Test Results and Lessons Learned

1997-07-01
972375
A test has been completed at NASA's Marshall Space Flight Center (MSFC) to evaluate the Water Recovery and Management (WRM) system and Waste Management (WM) urinal design for the United States On-Orbit Segment (USOS) of the International Space Station (ISS). Potable and urine reclamation processors were integrated with waste water generation equipment and successfully operated for a total of 128 days in recipient mode configuration to evaluate the accumulation of contaminants in the water system and to assess the performance of various modifications to the WRM and WM hardware. No accumulation of contaminants were detected in the product water over the course of the recipient mode test. An additional 18 days were conducted in donor mode to assess the ability of the system to removal viral contaminants, to monitor the breakthrough of organic contaminants through the multifiltration bed, and for resolving anomalies that occurred during the test.
Technical Paper

Phase III Integrated Water Recovery Testing at MSFC: International Space Station Configuration Test Results and Lessons Learned

1995-07-01
951586
A test has been completed at NASA's Marshall Space Flight Center (MSFC) to evaluate the latest Water Recovery and Management (WRM) system and Waste Management (WM) urinal design for the United States On-Orbit Segment (USOS) of the International Space Station (ISS) with higher fidelity hardware and integration than has been achieved in previous integrated tests. Potable and urine reclamation processors were integrated with waste water generation equipment and successfully operated for a total of 116 days to evaluate the impacts of changes made as a result of the redesign from Space Station Freedom (SSF) to the ISS. This testing marked the first occasion in which the WRM was automated at the system level, allowing for evaluation of the hardware performance under ISS operating conditions. It was also the first time a “flight-like” Process Control Water Quality Monitor (PCWQM) and a WM urinal were tested in an integrated system.
Technical Paper

Characterization of Condensate from the Research Animal Holding Facility (RAHF)

1994-06-01
941506
Life Sciences research on Space Station will utilize rats to study the effects of the microgravity environment on mammalian physiology and to develop countermeasures to those effects for the health and safety of the crew. The animals will produce metabolic water which must be reclaimed to minimize logistics support. The condensate from the Research Animal Holding Facility (RAHF) flown on Spacelab Life Sciences-2 (SLS-2) in October 1993 was used as an analog to determine the type and quantity of constituents which the Space Station (SS) water reclamation system will have to process. The most significant organics present in the condensate were 2-propanol, glycerol, ethylene glycol, 1,2-propanediol, acetic acid, acetone, total proteins, urea and caprolactam while the most significant inorganic was ammonia. Microbial isolates included Xanthomonas, Sphingobacterium, Pseudomonas, Penicillium, Aspergillus and Chrysosporium.
Technical Paper

Process Material Management in the Space Station Environment

1988-07-01
880996
The Space Station provides a unique facility for conducting material processing and life science experiments under microgravity conditions. These conditions place special requirements on the U.S. Laboratory for storing and transporting chemicals and process fluids, reclaiming water from selected experiments, treating and storing experiment wastes, and providing vacuum utilities. To meet these needs and provide a safe laboratory environment, the Process Material Management System (PMMS) is being developed. Preliminary design requirements and concepts related to the PMMS are addressed in addition to discussing the MSFC PMMS breadboard test facility and a preliminary plan for validating the overall system design. The system contains a fluid handling subsystem which manages process fluids required by each experiment while a chemical storage facility safely stores potentially hazardous chemicals.
Technical Paper

Phase III Integrated Water Recovery Testing at MSFC: Single Loop Test Results and Lessons Learned

1993-07-01
932048
A series of tests has been conducted at the NASA Marshall Space Flight Center (MSFC) to evaluate the performance of the Space Station Freedom (SSF) water recovery system. Potable and urine reclamation processors were integrated with waste water generation equipment and successfully operated for a total of 144 days. This testing marked the first occasion in which the waste feed sources for previous potable and hygiene loops were combined into a single loop and processed to potable water quality. Reclaimed potable water from the combined waste waters routinely met the SSF water quality specifications. In the last stage of this testing, data was obtained that indicated that the Water Processor (WP) presterilizer may not be required to meet the potable water quality specification.
Technical Paper

OPAD Status Report: Investigation of SSME Component Erosion

1992-04-01
921030
Significant erosion of preburner faceplates was observed during recent Space Shuttle Main Engine (SSME) test firings at the NASA Technology Test Bed (TTB), Marshall Space Flight Center (MSFC), Al. The OPAD instrumentation acquired exhaust plume spectral data during each test which indicate the occurrence of metallic species consistent with faceplate component composition. A qualitative analysis of the spectral data was conducted to evaluate the state of the engine versus time for each test according to the nominal conditions of TTB firing #17 and #18. In general the analyses indicate abnormal erosion levels at or near startup. Subsequent to the initial erosion event, signal levels tend to decrease towards nominal baseline values. These findings, in conjunction with post-test engine inspections, suggest that in cases under study, the erosion may not have been catastrophic to the immediate operation of the engine.
Technical Paper

Phase III Integrated Water Recovery Testing at MSFC: Closed Hygiene and Potable Loop Test Results and Lesson Learned

1992-07-01
921117
A series of tests has been conducted at the NASA Marshall Space Flight Center (MSFC) to evaluate the performance of a Space Station Freedom (SSF) pre-development water recovery system. Potable, hygiene, and urine reclamation subsystems were integrated with end-use equipment items and successfully operated for a total of 35 days, including 23 days in closed-loop mode with man-in-the-loop. Although several significant subsystem physical anomalies were encountered, reclaimed potable and hygiene water routinely met current SSF water quality specifications. This paper summarizes the test objectives, system design, test activities/protocols, significant results/anomalies, and major lessons learned.
Technical Paper

Aquatic Biofilms and Their Responses to Disinfection and Invading Species

1992-07-01
921211
A primary concern in creating a water reclamation system for long-duration manned space flight is the control of microbial contamination which can jeopardize water quality, compromise human health, and degrade constituent materials of the system. The microbial ecology facility in the Analytical and Physical Chemistry Branch of the Materials and Processes Laboratory at NASA's Marshall Space Flight Center (MSFC) is addressing this concern by means of experiments investigating the interaction of bacterial species in the development of a biofilm and their response to the introduction of additional species or to disinfection. Both static and recycling water systems are used. In static experiments, varied sequence and timing of species introduction in binary bacterial biofilms on 316L stainless steel elucidate the mechanisms involved in biofilm formation.
Technical Paper

Evaluation of Commercial Off-the-Shelf Ammonia Sorbents and Carbon Monoxide Oxidation Catalysts

2008-06-29
2008-01-2097
Designers of future space vehicles envision simplifying the Atmosphere Revitalization (AR) system by combining the functions of trace contaminant (TC) control and carbon dioxide removal into one swing-bed system. Flow rates and bed sizes of the TC and CO2 systems have historically been very different. There is uncertainty about the ability of trace contaminant sorbents to adsorb adequately in a high-flow or short bed length configurations, and to desorb adequately during short vacuum exposures. This paper describes preliminary results of a comparative experimental investigation into adsorbents for trace contaminant control. Ammonia sorbents and low temperature catalysts for CO oxidation are the foci. The data will be useful to designers of AR systems for Constellation. Plans for extended and repeated vacuum exposure of ammonia sorbents are also presented.
Technical Paper

Development and Testing of a Sorbent-Based Atmosphere Revitalization System for the Crew Exploration Vehicle 2007/2008

2008-06-29
2008-01-2082
The design of a Vacuum-Swing Adsorption (VSA) system to remove metabolic water and metabolic carbon dioxide from the Orion Crew Exploration Vehicle (CEV) atmosphere is presented. The approach for Orion is a VSA system that removes not only 100 percent of the metabolic CO2 from the atmosphere, but also 100% of the metabolic water as well, a technology approach that has not been used in previous spacecraft life support systems. The design and development of the Sorbent Based Atmosphere Regeneration (SBAR) system, including test articles, a facility test stand, and full-scale testing in late 2007 and early 2008 is discussed.
Technical Paper

Development and Testing of a Sorbent-Based Atmosphere Revitalization System for the Crew Exploration Vehicle

2006-07-17
2006-01-2219
The design of a vacuum-swing adsorption process to remove metabolic water, metabolic carbon dioxide, and metabolic and equipment generated trace contaminant gases from the crew exploration vehicle (CEV) atmosphere is presented. For the CEV, the sorbent-based atmosphere revitalization (SBAR) system must remove all metabolic water, a technology approach that has not been used in previous spacecraft life support systems. Design and development of a prototype SBAR, a full scale and subscale facility test stand, and other aspects of the SBAR development program is discussed.
Technical Paper

Performance Characterization of a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization Based on Integrated Tests with Carbon Dioxide Removal and Reduction Assemblies

2006-07-17
2006-01-2126
CO2 removal, recovery and reduction are essential processes for a closed loop air revitalization system in a crewed spacecraft. Typically, a compressor is required to recover the low pressure CO2 that is being removed from the spacecraft in a swing bed adsorption system. This paper describes integrated tests of a Temperature-Swing Adsorption Compressor (TSAC) with high-fidelity systems for carbon dioxide removal and reduction assemblies (CDRA and Sabatier reactor). It also provides details of the TSAC operation at various CO2 loadings. The TSAC is a solid-state compressor that has the capability to remove CO2 from a low-pressure source, and subsequently store, compress, and deliver it at a higher pressure. TSAC utilizes the principle of temperature-swing adsorption compression and has no rapidly moving parts.
Technical Paper

Characterization of the Three Phase Catalytic Wet Oxidation Process in the International Space Station (ISS) Water Processor Assembly

2000-07-10
2000-01-2252
A three phase catalytic mathematical model was developed for analysis and optimization of the volatile reactor assembly (VRA) used on International Space Station (ISS) Water Processor. The Langmuir-Hinshelwood Hougen-Watson (L-H) expression was used to describe the surface reaction rate. Small column experiments were used to determine the L-H rate parameters. The test components used in the experiments were acetic acid, acetone, ethanol, 1-propanol, 2-propanol and propionic acid. These compounds are the most prevalent ones found in the influent to the VRA reactor. The VRA model was able to predict performance of small column data and experimental data from the VRA flight experiment.
Technical Paper

Assessment of the Vapor Phase Catalytic Ammonia Removal (VPCAR) Technology at the MSFC ECLS Test Facility

2007-07-09
2007-01-3036
The Vapor Phase Catalytic Ammonia Removal (VPCAR) technology has been previously discussed as a viable option for the Exploration Water Recovery System. This technology integrates a phase change process with catalytic oxidation in the vapor phase to produce potable water from exploration mission wastewaters. A developmental prototype VPCAR was designed, built and tested under funding provided by a National Research Announcement (NRA) project. The core technology, a Wiped Film Rotating Device (WFRD) was provided by Water Reuse Technologies under the NRA, whereas Hamilton Sundstrand Space Systems International performed the hardware integration and acceptance test of the system. Personnel at the Ames Research Center performed initial systems test of the VPCAR using ersatz solutions. To assess the viability of this hardware for Exploration Life Support (ELS) applications, the hardware has been modified and tested at the MSFC ECLS Test Facility.
X