Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Modeling the Spark Ignition Engine Warm-Up Process to Predict Component Temperatures and Hydrocarbon Emissions

1991-02-01
910302
In order to understand better the operation of spark-ignition engines during the warm-up period, a computer model had been developed which simulates the thermal processes of the engine. This model is based on lumped thermal capacitance methods for the major engine components, as well as the exhaust system. Coolant and oil flows, and their respective heat transfer rates are modeled, as well as friction heat generation relations. Piston-liner heat transfer is calculated based on a thermal resistance method, which includes the effects of piston and ring material and design, oil film thickness, and piston-liner crevice. Piston/liner crevice changes are calculated based on thermal expansion rates and are used in conjunction with a crevice-region unburned hydrocarbon model to predict the contribution to emissions from this source.
Technical Paper

The Sensitivity of DPF Performance to the Spatial Distribution of Ash Inside DPF Inlet Channels

2013-04-08
2013-01-1584
Ash inside a honeycomb-configured diesel particulate filter (DPF) inlet channel accumulates both as a cake layer along the channel walls and as a “plug” towards the back of the channel. Experimental studies of DPF ash distribution have shown both an axial variation of deposits along channels and accumulation towards the end plugs. This study evaluates the sensitivity of DPF pressure drop on ash axial distribution and the potential to reduce flow restrictions by controlling and optimizing the spatial distribution of ash inside DPF channels. A computational model has been used in conjunction with experimental data to illustrate the sensitivity of ash spatial distribution on DPF performance. The classical constant-thickness DPF one-dimensional models have substantially been updated to include layer thickness axial variations. Material properties, such as ash characteristics, are provided by recent experiments at the authors' laboratory.
Technical Paper

A Model For Estimating Oil Vaporization From The Cylinder Liner As A Contributing Mechanism to Engine Oil Consumption

1999-05-03
1999-01-1520
A model has been developed for estimating the oil vaporization rate from the cylinder liner of a reciprocating engine. The model uses input from an external cycle simulator and an external liner oil film thickness model. It allows for the change in oil composition and the change in oil film thickness due to vaporization. It also estimates how the passage of the compression and scraper rings combine with the vaporization to influence the steady-state composition of the oil layer in the upper ring pack. Computer model results are presented for a compression-ignition engine using a range of liner temperatures, several engine speeds, and two different oils. Vaporization is found to be highly dependent on liner temperature and steady-state oil composition. The steady-state oil composition near the top of the cylinder is found to be significantly different than the composition of the oil near the bottom of the cylinder.
Technical Paper

Modeling the Extravehicular Mobility Unit (EMU) Space Suit: Physiological Implications for Extravehicular Activity (EVA)

2000-07-10
2000-01-2257
Extravehicular activity (EVA) is investigated through experiments testing an actual extravehicular mobility unit (EMU) performing several EVA tasks in the laboratory, and a dynamic model of the EMU space suit is developed. Building directly on earlier work in EVA simulation, the space suit model was created from mass, inertia, and performance data to augment the unsuited 12-segment human model used in previous studies. A modified Preisach model was used to mathematically describe the hysteretic torque characteristics of joints in a pressurized space suit, and implemented numerically based on observed suit parameters. Computational simulations, based loosely on a 1995 EVA involving manipulation of the Spartan astrophysics payload, were performed to observe the effect of suit constraints on simulated astronaut performance.
Technical Paper

Development and Implementation of a Powertrain Electrical System Simulator with Computer-Controlled Fault Generation

2006-04-03
2006-01-1599
To manage the function of a vehicle's engine, transmission, and related subsystems, almost all modern vehicles make use of one or more electronic controllers running embedded software, henceforth referred to as a Powertrain Controller System or PCS. Fully validating this PCS is a necessary step of vehicle development, and the validation process requires extensive amounts of testing. Within the automotive industry, more and more of this validation testing is being performed using Hardware-in-the-Loop (HIL) simulators to automate the extensive test sequences. A HIL simulation typically mates the physical PCS to a closed-loop real time computer simulation of a powertrain. Interfacing the physical PCS hardware to a powertrain simulation requires the HIL simulator to have extensive signal input/output (I/O) electronics and simulated actuator electrical loading.
Technical Paper

Modeling Space Suit Mobility: Applications to Design and Operations

2001-07-09
2001-01-2162
Computer simulation of extravehicular activity (EVA) is increasingly being used in planning and training for EVA. A space suit model is an important, but often overlooked, component of an EVA simulation. Because of the inherent difficulties in collecting angle and torque data for space suit joints in realistic conditions, little data exists on the torques that a space suit’s wearer must provide in order to move in the space suit. A joint angle and torque database was compiled on the Extravehicular Maneuvering Unit (EMU), with a novel measurement technique that used both human test subjects and an instrumented robot. Using data collected in the experiment, a hysteresis modeling technique was used to predict EMU joint torques from joint angular positions. The hysteresis model was then applied to EVA operations by mapping out the reach and work envelopes for the EMU.
Technical Paper

Crash Safety of Lithium-Ion Batteries Towards Development of a Computational Model

2010-04-12
2010-01-1078
Battery packs for Hybrids, Plug-in Hybrids, and Electric Vehicles are assembled from a system of modules (sheets) with a tight sheet metal casing around them. Each module consists of an array of individual cells which vary in the composition of electrodes and separator from one manufacturer to another. In this paper a general procedure is outlined on the development of a constitutive and computational model of a cylindrical cell. Particular emphasis is placed on correct prediction of initiation and propagation of a tearing fracture of the steel can. The computational model correctly predicts rupture of the steel can which could release aggressive chemicals, fumes, or spread the ignited fire to the neighboring cells. The initiation site of skin fracture depends on many factors such as the ductility of the casing material, constitutive behavior of the system of electrodes, and type of loading.
Journal Article

Oil Transport from Scraper Ring Step to Liner at Low Engine Speeds and Effect of Dimensions of Scraper Ring Step

2016-04-05
2016-01-0495
In gasoline engines, a scraper ring with a step on the bottom outer edge is widely used as a second ring. However, there lacks a fundamental understanding on the effects of this feature and its dimensions on oil transport. Inspired by observations from visualization experiments, this work combining computational fluid dynamics (CFD) and theoretical analysis shows that oil can be trapped in the space bordered by a second ring step and the chamfer of a piston third land. The trapped oil can be released to a liner when the piston is approaching the top dead center (TDC). This additional oil on the liner becomes a potential source of oil consumption. Such oil transport has been observed at typically less than 1500rpm. Since road vehicles often operate in this speed range, the newly-observed oil trapping and release can be closely associated with oil consumption in gasoline engines. In this work, a comprehensive study on oil trapping and release will be demonstrated.
Technical Paper

Experiments and Analyses on Stability/Mid-Channel Collapse of Ash-Deposit Wall Layers and Pre-Mature Clogging of Diesel Particulate Filters

2019-04-02
2019-01-0972
The conventional concept of soot and ash wall deposits (cake-layers) gradually building up along the channels of a ceramic honeycomb and then periodically or continuously being swept downstream toward the “end-plugs” of the channels may not always occur in practice. When deposits irregularly form on or detach from the walls (mid-channel collapse), causing premature clogging usually around the mid-sections of the channels, the particulate filter could experience a much more rapid rate of back pressure rise, resulting in the need of premature repair or replacement. Experiments were performed, accompanied by analysis and simulation, to investigate the factors that contribute to the pattern of wall deposits, particularly of ash, and the stability of the deposit layers.
Journal Article

AHSS Shear Fracture Predictions Based on a Recently Developed Fracture Criterion

2010-04-12
2010-01-0988
One of the issues in stamping of advanced high strength steels (AHSS) is the stretch bending fracture on a sharp radius (commonly referred to as shear fracture). Shear fracture typically occurs at a strain level below the conventional forming limit curve (FLC). Therefore it is difficult to predict in computer simulations using the FLC as the failure criterion. A modified Mohr-Coulomb (M-C) fracture criterion has been developed to predict shear fracture. The model parameters for several AHSS have been calibrated using various tests including the butter-fly shaped shear test. In this paper, validation simulations are conducted using the modified (M-C) fracture criterion for a dual phase (DP) 780 steel to predict fracture in the stretch forming simulator (SFS) test and the bending under tension (BUT) test. Various deformation fracture modes are analyzed, and the range of usability of the criterion is identified.
X