Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Measurement of Piston Skirt Oil-film Pressure under Piston Slap

2007-05-15
2007-01-2215
Using small thin-film pressure sensors deposited onto a piston skirt surface, oil-film pressure on the piston skirt surface is measured when piston slap noise is generated without affecting the surface geometry, stiffness and mass of the piston. Under a no-load firing engine condition and at low temperature, the measured oil-film pressure corresponded well to the measured acceleration of the cylinder liner, which is indicative of piston slap noise, confirming the validity of the present method. Moreover, the oil-film pressure distribution on the skirt surface was measured for different engine speeds and piston pin offsets, which enabled more insight to be provided into piston secondary motion than that by considering the effects of cylinder liner acceleration.
Technical Paper

Balancing Design Functional Coupling and Sensitivity to Noise to Achieve the Design Target

2007-04-16
2007-01-1207
The primary objective in design is to achieve the target value of the design's response function. If a design fails to achieve the target value, it most likely fails in two ways: inconsistent functional output and in design involving multiple response functions, unable to converge to the multiple target values in spite of iterative adjustment of the design parameters. The former is symptom of a design not able to perform in the presence of variability, i.e., noise. The latter is symptom of a design that fails to perform in the presence of functional coupling. Both problems are best addressed at the conceptual stage of the design at which only design solution that is inherently robust to noise and functionally uncoupled is entertained. If this is not possible, the alternative is to exploit the interaction between control variables and variables that are sources of noise and functional coupling to render the design insensitive to them.
Technical Paper

The Anatomy of Knock

2016-04-05
2016-01-0704
The combustion process after auto-ignition is investigated. Depending on the non-uniformity of the end gas, auto-ignition could initiate a flame, produce pressure waves that excite the engine structure (acoustic knock), or result in detonation (normal or developing). For the “acoustic knock” mode, a knock intensity (KI) is defined as the pressure oscillation amplitude. The KI values over different cycles under a fixed operating condition are observed to have a log-normal distribution. When the operating condition is changed (over different values of λ, EGR, and spark timing), the mean (μ) of log (KI/GIMEP) decreases linearly with the correlation-based ignition delay calculated using the knock-point end gas condition of the mean cycle. The standard deviation σ of log(KI/GIMEP) is approximately a constant, at 0.63. The values of μ and σ thus allow a statistical description of knock from the deterministic calculation of the ignition delay using the mean cycle properties
Technical Paper

Friction and Lubrication Characteristics of Piston Pin Boss Bearings of an Automotive Engine

1997-02-24
970840
The aim of this research was to analyze the lubrication conditions of piston pin boss bearings used in the press-fit piston pins of automobile gasoline engines. An original pin boss friction measuring device was developed and used to successfully obtain measurements. It was revealed that the friction force peaks twice every cycle at high engine loads, and non-fluid lubrication characteristics are displayed. The friction forces for various differing piston pins and pin boss bearings were analyzed, and it was shown that reducing piston pin length or thickness to reduce piston weight, or reducing the pin boss bearing clearance to reduce noise worsen the friction characteristics and increase the possibility of abnormal bearing friction as well as seizure.
Technical Paper

Part 1: Piston Friction and Noise Study of Three Different Piston Architectures for an Automotive Gasoline Engine

2006-04-03
2006-01-0427
The objective was to rank piston friction and noise for three piston architectures at three cold clearance conditions. Piston secondary motion was measured using four gap sensors mounted on each piston skirt to better understand the friction and noise results. One noticeable difference in friction performance from conventional designs was as engine speed increased the friction force during the expansion stroke decreased. This was accompanied by relatively small increases in friction force during the other strokes so Friction Mean Effective Pressure (FMEP) for the whole cycle was reduced. Taguchi's Design of Experiment method was used to analyze the variances in friction and noise.
Technical Paper

Vibration Measurement in Flight

1937-01-01
370175
EQUIPMENT for measuring vibration in airplane structures and powerplants during actual flight is described in this paper. This development is the result of a cooperative research program carried out by the Bureau of Aeronautics of the U. S. Navy and the Massachusetts Institute of Technology with contributions of improvements in design and new features by the Sperry Gyroscope Co., Inc. In its essentials, the M.I.T.-Sperry Apparatus consists of a number of electrical pickup units which operate a central amplifying and recording unit. The recorder is a double-element photographic oscillograph. Each pickup is adapted especially to the type of vibration that it is intended to measure and is made so small that it does not appreciably affect the vibration characteristics of the member to which it is attached rigidly. By using a number of systematically placed pickups, all the necessary vibration information on an airplane can be recorded during a few short flights.
Technical Paper

Influence of Clearance Between Piston and Cylinder on Piston Friction

1988-10-01
881621
It is desired to minimize clearance between the piston and the cylinder to reduce noise and suppress vibration. Although significant effort has been made for this purpose, increased piston friction force and the occurrence of seizure still prevent the ideal clearance from being realized. In order to determine the lower limit of the piston clearance, it is crucial to clarify the following unknowns; which part of piston contributes to friction increase as the piston clearance is decreased, during which phase of the piston motion the friction increase occurs, and how the piston clearance affects lubrication phenomena. Measurements of piston friction force under operating conditions were made by applying the Floating Liner Method(1),(2)* to a single-cylinder test gasoline engine. The measurement revealed how the piston friction varied as the piston clearance decreased. Lateral motion of the piston was also measured.
Technical Paper

Characteristics of Combustion Pressure Vibration in Hydrogen Fuel Injection Hot Surface Ignition Engines

1987-09-01
871611
In high pressure hydrogen injection hot surface ignition engines under nearly all engine operating conditions combustion pressure vibration is generated just after ignition. As a result of many experimental investigations the true nature for the cause of this interesting phenomenon was found and are listed: (1) This phenomenon probably originates from the extremely high local rate of burning of the hydrogen-air mixture. (2) Accompaning the stronger combustion pressure vibration was an increase in engine vibration and noise with increase in NOx emission and higher piston temperature. (3) Longer ignition delay resulted in a steeper pressure-time diagram which resalted in a stronger combustion pressure vibration. (4) The phenomenon had negligible effect on engine performance. (5) The phenomenon can be prevented by premixing a ceratain quantity of hydrogen gas into the intake air stream. The result was a shortened ignition delay.
X