Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Pyrolysis: A “Recycling” Option for Automobile Shredder Residue

The recyclability of old automobiles is of major interest to auto manufacturers, original equipment manufacturers and regulatory bodies concerned about sustainable development. While the majority of the ferrous and non-ferrous metals are currently recycled, the non-metallic waste fraction generated by automobile shredding operations is currently disposed of in landfills. In view of the relatively large concentration of plastics and rubber in this material, pyrolysis, the thermal degradation of polymeric materials to predominantly hydrocarbon products, appears an ideal resource recovery option for this waste stream. In this study, the results of pyrolysis experiments performed in our laboratory will be examined and compared with pyrolysis data reported in the literature. The importance of pyrolysis temperature, pyrolysis reaction time and pyrolysis process design on product formation (liquids, solids and gases) as well as chemical composition are compared.
Technical Paper

Mechanical Property Behaviour of Rheocast 319 Alloys with and without Iron Additions

Cast aluminum-silicon alloys have witnessed a notable increase in use in the automotive and transport industry. The ability of these alloys to be easily cast into complex shapes coupled with a favorable strength-to-weight ratio has given them an edge over cast irons. One particular area of casting which has received further and further attention is the area of semi-solid casting, where an alloy casting is prepared as slurry with flow properties that resemble both solid and liquid. In the present work, the effects of iron additions on the mechanical properties of a 319 semi-solid alloy were studied. This alloy was prepared using the SEED process, as developed by Rio Tinto Alcan in collaboration with the Aluminum Technology Centre of NRC Canada. The SEED (Swirled Enthalpy Equilibration Device) process is a novel rheocasting method which yields a semi-solid slurry from the mechanical stirring and cooling of the molten aluminum.
Technical Paper

Failure Mechanisms and Damage Model of Ductile Cast Iron under Low-Cycle Fatigue Conditions

Strain-controlled low-cycle fatigue (LCF) experiments were conducted on ductile cast iron at total strain rates of 1.2/min, 0.12/min and 0.012/min in a temperature range of RT ~ 800°C. An integrated creep-fatigue (ICF) life prediction framework is proposed, which embodies a deformation mechanism based constitutive model and a thermomechanical damage model. The constitutive model is based on the decomposition of inelastic deformation into plasticity and creep mechanisms, which can describe both rate-independent and rate-dependent cyclic responses under wide strain rate and temperature conditions. The damage model takes into consideration of i) plasticity-induced fatigue, ii) intergranular embrittlement, iii) creep and iv) oxidation. Each damage form is formulated based on the respective physical mechanism/strain.
Technical Paper

Thermo-Mechanical Fatigue Testing of Welded Tubes for Exhaust Applications

Selected ferritic stainless steel sheets for exhaust applications were tested under thermo-mechanical fatigue (TMF) condition in the temperature range of 400-800 °C with partial constraint. Straight welded tubes were used as the testing coupons to withstand large compression without buckling, and to understand the effect of welding as well. Repeated tests confirmed the observed failure scenario for each material type. The hysteresis loop behaviors were also simulated using the mechanism-based integrated creep and fatigue theory (ICFT) model. Although more development work is needed, for quick material screening purpose this type of testing could be a very cost effective solution for materials and tube weld development for exhaust applications.
Journal Article

Analysis of Residual Strain Profiles in Distorted Aluminum Engine Blocks by Neutron Diffraction

In recent years, light weight components have been an area of significant importance in automotive design. This has led to the replacement of steel and cast iron with aluminum alloys for many automotive components. For instance, Al-Si alloys have successfully replaced nodular and gray cast iron in the production of large automotive components such as engine blocks. However, excessive residual strain along the cylinder bores of these engine blocks may result in cylinder distortion during engine operation. Therefore, in this study, neutron diffraction was used to evaluate residual strain along the aluminum cylinder bridge and the gray cast iron liners of distorted and undistorted engine blocks. The strains were measured in the hoop, radial, and axial orientations. The results suggest that the residual strain along the aluminum cylinder bridge of the distorted engine block was tensile for all three measured components.
Journal Article

Neutron Diffraction Study on Residual Stress in Aluminum Engine Blocks Following Machining and Service Testing

Development of lightweight alloys suitable for automobile applications has been of great importance to the automotive industry in recent years. The use of 319 type aluminum alloy in the production of gasoline engine blocks is an example of this shift towards light alloys for large automobile components. However, excessive residual stress along the cylinder bores of these engine blocks may cause problems during engine operation. Therefore, in this study, neutron diffraction was used to evaluate residual stresses along the aluminum cylinder bridge and the gray cast iron liners. The strains were measured in the hoop, radial, and axial orientations, while stresses were subsequently calculated using generalized Hooke's law. The results suggest that the residual stress magnitude for the aluminum cylinder bridge was tensile for all three measured components and gradually increased with cylinder depth towards the bottom of the cylinder.