Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Inverse Method for Measuring Weld Temperatures during Resistance Spot Welding

A new monitoring system predicts the progression of welding temperature fields during resistance spot welding. The system captures welding voltages and currents to predict contact diameters and simulate temperature fields. The system accurately predicts fusion lines and heat-affected zones. Accuracy holds even for electrode tips used for a few thousand welds of zinc coated steels.
Technical Paper

The Aerodynamic Performance of Automotive Underbody Diffusers

This paper examines the aerodynamic behaviour of plane-walled, single-plane-expansion, underbody diffusers fitted to a wind-tunnel model of a wheel-less, simple body having automobile proportions. The measurements were performed over a moving-belt assembly in the Pilot Wind Tunnel of the National Research Council of Canada (NRC). The purposes of the investigation were: to understand the governing physics of automotive underbody diffusers operating in ground proximity, to examine the effect of moving-ground and fixed-ground simulations on the behaviour of such diffusers and on the corresponding vehicle downforce and drag, to map the performance of simple, quasi-two-dimensional diffusers when used to produce downforce or drag reduction.
Technical Paper

Parametric Analysis of Resistance Spot Welding Lobe Curve

A linearized lumped parameter heat balance model was developed and is discussed for the general case of resistance welding to see the effects of each parameter on the lobe shape. The parameters include material properties, geometry of electrodes and work piece, weld time and current, and electrical and thermal contact characteristics. These are then related to heat dissipation in the electrodes and the work piece. The results indicate that the ratio of thermal conductivity and heat capacity to electrical resistivity is a characteristic number which is representative of the ease of spot weldability of a given material. The increases in thermal conductivity and heat capacity of the sheet metal increase the lobe width while increases in electrical resistivity decrease the lobe width. Inconsistencies in the weldability of thin sheets and the wider lobe width at long welding times can both be explained by the heat dissipation characteristics.
Technical Paper

A Full Scale Class 8 Conventional Tractor-Trailer in the 9×9m Wind Tunnel

This paper outlines the techniques used to install both a full scale and a half scale tractor-trailer model in the 9×9 meter National Research Council of Canada wind tunnel in Ottawa, Canada. The objectives were to measure the cooling drag of an active cooling system and to investigate the aerodynamic testing limits of long, yawed models inside a solid wall wind tunnel. The tunnel interference problem is discussed as it pertains to the upstream boundary, test section floor, downstream boundary, ceiling and side walls and tractor-trailer surface pressure measurements. A potential solution to the problem, however, is the subject of a follow-up paper.
Technical Paper

Characterization of Structural, Volume and Pressure Components to Space Suit Joint Rigidity

Gas-pressurized space suits are highly resistive to astronaut movement, and this resistance has been previously explained by volume and/or structural effects. This study proposed that an additional effect, pressure effects due to compressing/expanding the internal gas during joint articulation, also inhibits mobility. EMU elbow torque components were quantified through hypobaric testing. Structural effects dominated at low joint angles, and volume effects were found to be the primary torque component at higher angles. Pressure effects were found to be significant only at high joint angles (increased flexion), contributing up to 8.8% of the total torque. These effects are predicted to increase for larger, multi-axis joints. An active regulator system was developed to mitigate pressure effects, and was found to be capable of mitigating repeated pressure spikes caused by volume changes.
Technical Paper

Pickup Truck Aerodynamics - Keep Your Tailgate Up

The aerodynamic effects of the pickup truck tailgate are examined in this paper. It is shown that the removal or the lowering of the tailgate increases the aerodynamic drag of a pickup truck, increases lift by up to sixty percent and increases the yawing moment. All these changes are negative and reduce vehicle performance, albeit, only by small amounts. This finding demonstrates that the commonly seen removal of tailgates to reduce aerodynamic drag is a public misconception that should be discouraged by manufacturers and by regulators.
Journal Article

Examination of the Maskell III Blockage Correction Technique for Full Scale Testing in the NRC 9-Meter Wind Tunnel

The 9-meter wind tunnel of the National Research Council (NRC) of Canada is commonly employed in full-scale testing of class 8 tractors. In this configuration the model blocks 10 - 15% of the test section cross-sectional area, which is greater than generally advocated blockage limits. The NRC utilizes the Maskell III method to correct data for wall interference but the effectiveness of this technique at such blockage levels remained to be seen. Corrected full-scale data was compared to data acquired with a half-scale model to determine how closely the corrected high-blockage data would agree with the low-blockage baseline. The half-scale model presented an opportunity to test at full-scale Reynolds numbers, with less than 4% blockage, which falls within most recommendations of maximum allowable blockage.
Journal Article

Effects of Ethanol Content on Gasohol PFI Engine Wide-Open-Throttle Operation

The NOx emission and knock characteristics of a PFI engine operating on ethanol/gasoline mixtures were assessed at 1500 and 2000 rpm with λ =1 under Wide-Open-Throttle condition. There was no significant charge cooling due to fuel evaporation. The decrease in NOx emission and exhaust temperature could be explained by the change in adiabatic flame temperature of the mixture. The fuel knock resistance improved significantly with the gasohol so that ignition could be timed at a value much closer or at MBT timing. Changing from 0% to 100% ethanol in the fuel, this combustion phasing improvement led to a 20% increase in NIMEP and 8 percentage points in fuel conversion efficiency at 1500 rpm. At 2000 rpm, where knocking was less severe, the improvement was about half (10% increase in NIMEP and 4 percentage points in fuel conversion efficiency).