Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Dual-Fuel Gasoline-Alcohol Engines for Heavy Duty Trucks: Lower Emissions, Flexible-Fuel Alternative to Diesel Engines

Long-haul and other heavy-duty trucks, presently almost entirely powered by diesel fuel, face challenges meeting worldwide needs for greatly reducing nitrogen oxide (NOx) emissions. Dual-fuel gasoline-alcohol engines could potentially provide a means to cost-effectively meet this need at large scale in the relatively near term. They could also provide reductions in greenhouse gas emissions. These spark ignition (SI) flexible fuel engines can provide operation over a wide fuel range from mainly gasoline use to 100% alcohol use. The alcohol can be ethanol or methanol. Use of stoichiometric operation and a three-way catalytic converter can reduce NOx by around 90% relative to emissions from diesel engines with state of the art exhaust treatment.
Technical Paper

Effect of Low Cetane Fuels on Diesel Engine Operation: 1 - Preliminary Runs on Detroit Diesel 3-71 Engine

Three fuels with cetane numbers of 45, 36 and 29 have been run at four load levels at each of three speeds in a Detroit: Diesel 3–71 engine with standard injectors. Measurements of temperatures, pressures, Load, fuel flow, cylinder pressure in one cylinder, strain gauge measurements from the rocker arm operating one injector and exhaust emissions were all recorded. Comparisons show little change in operation except for increases in ignition delay and rate of cylinder pressure rise with the low cetane fuels. It was concluded, on the basis of these short runs, that the intermediate fuel probably would not cause major difficulties but the lowest cetane fuel could possibly present problems with noise and engine durability.
Technical Paper

Effect of Low Cetane Fuels on Diesel Engine Performance 2-Combustion Performance of a Detroit Diesel 3-71 Engine

Four experimental diesel fuels with cetane numbers (CN) of 40, 37, 35 and 27 have been tested in a Detroit Diesel Allison 3-71 engine using the standard N65 injectors. The 35 CN fuel was a blend of distillates from conventional and tar sands crude with hydrogen treated cat-cracked stock. This provided a fuel typical of the 1990's and beyond, with substantial levels of aromatic and cracked components. The 27 CN fuel was a blend of the same components as the 35 CN fuel only with a larger portion of the hydrogen treated cat-cracked component. The 40 CN fuel was identical to the 35 CN fuel with a .2% DII-3 Diesel Ignition Improver. The 37 CN fuel was a blend of Canadian winter diesel fuel oil and 24% Light Cycle Oil (LCO), The four experimental fuels and one reference fuel were tested at four load levels at each of three engine speeds. The performance and combustion characteristics were compared with the physical and chemical fuel properties.
Technical Paper

Performance/Combustion Characteristics of Six Canadian Alternative Fuels Tested in a Bombardier Medium Speed Diesel

Six experimental fuels representative of Canadian future fuel options were tested against a reference fuel in a Bombardier 12 cylinder, 4 stroke, 3000 hp, medium speed diesel. The reference fuel was a straight run ASTM #2-D. The first test fuel blend consisted of heavy atmospheric gas oil that extended the distillation range (higher end point) of the other blend component ASTM #2-D. The second fuel was a blend of a distillate cut from a mixture of conventional and tar sands crude with hydrogen treated cracked stock. This provided a fuel with substantial levels of aromatic and cracked components. The third fuel was gas oil side stream: a low cetane number, high aromatics level tar sands distillate. The fourth fuel was an equal portion blend of tar sands crude components, gas oil side-stream and heavy unifined gas oil. The fifth fuel was a blend of ASTM #2-D heating oil and a substantial portion of stabilized cracked stock.
Technical Paper

High Speed Diesel Performance/Combustion Characteristics Correlated with Structural Composition of Tar Sands Derived Experimental Fuels

Two Canadian tar sands derived experimental diesel fuels with cetane numbers of 26 and 36 and a reference fuel with a cetane number of 47 were tested in a Deutz (F1L511D), single cylinder, A stroke, naturally aspirated research engine. The fuels were tested at intake and cooling air temperatures of 30 and 0°C. The 36 cetane number fuel was tested with advanced, rated and retarded injection timings. Poor engine speed stability at light loads and excessive rates of combustion pressure rise were experienced with the lowest cetane number fuel. Detailed performance/combustion behavior is presented and a correlation with fuel structural composition is made. The analytical techniques used to characterize the fuels included liquid chromatography, gas chromatography mass spectrometry (GC-MS) and proton nuclear magnetic resonance spectrometry (PNMR).
Technical Paper

Ignition Quality Rating Methods for Diesel Fuels-A Critical Appraisal

A critical evaluation of the current ASTM method of rating diesel fuels, and of the available non-engine techniques for the estimation of cetane nunbers of diesel fuels is presented. The relationship between ignition quality and fuel composition is reviewed and it is shown that each member of an homologous series of hydrocarbons does not have the same ignition characteristics as the other members of the series. It is emphasized that the belief that paraffins have relatively high cetane ratings as compared to aromatics and cycloparaffins is not always correct. The basic flaw in the cetane index correlations, which use the easily measurable physical properties of the fuels as independent parameters, is explained. A fuel data base has been used to compare the different correlations.
Technical Paper

Cetane Number Estimation of Diesel Fuels from Carbon Type Structural Composition

The present day measure of the ignition quality of a diesel fuel is the cetane number. Cetane number determination is carried out using a special single cylinder engine with reproducible operating conditions and variable compression ratio. The importance of the carbon skeletal structure of the fuel on the ignition quality is qualitatively well known, but the practice of defining the ignition quality of diesel fuels by a term, whose physical and/or chemical meaning is not well understood, has not been abandoned yet. The correlations that have been proposed recently, which relate the total fuel aromaticity or mid-boiling point, hydrogen content and density to the cetane number, suffer from the lack of representation of the fuel's compositional structure, and of well defined relationship, if any, between boiling point, hydrogen content, density and ignition quality.
Technical Paper

Alcohol Fueled Heavy Duty Vehicles Using Clean, High Efficiency Engines

Non-petroleum based liquid fuels are essential for reducing oil dependence and greenhouse gas generation. Increased substitution of alcohol fuel for petroleum based fuels could be achieved by 1) use in high efficiency spark ignition engines that are employed for heavy duty as well as light duty operation and 2) use of methanol as well as ethanol. Methanol is the liquid fuel that is most efficiently produced from thermo-chemical gasification of coal, natural gas, waste or biomass. Ethanol can also be produced by this process but at lower efficiency and higher cost. Coal derived methanol is in limited initial use as a transportation fuel in China. Methanol could potentially be produced from natural gas at an economically competitive fuel costs, and with essentially the same greenhouse gas impact as gasoline. Waste derived methanol could also be an affordable low carbon fuel.
Technical Paper

Dramatic Emissions Reductions with a Direct Injection Diesel Engine Burning Supercritical Fuel/Water Mixtures

Research conducted at the Supercritical (SC) facility of MIT's Energy Laboratory provided visual confirmation of a single phase, homogeneous water/fuel mixture near the critical temperature and pressure of water. Equal volumes of water and diesel fuel were observed to be completely miscible, and high temperature polymerization of fuel molecules was not found. This is believed to be the first observation of a solution of diesel fuel and water. This mixture was subsequently burned under atmospheric spray conditions with very low NOx, smoke, CO, and HC. The results suggested that in-cylinder combustion in a compression ignition engine was warranted. Tests were conducted in a single cylinder, air-cooled, naturally aspirated, 3.5 horsepower Yanmar diesel engine. The compressibility of this new fuel composition necessitated a modified injector to provide smooth operation.