Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Simulation of Catalyzed Diesel Particulate Filter for Active Regeneration Process Using Secondary Fuel Injection

2017-10-08
2017-01-2287
Advanced exhaust after-treatment technology is required for heavy-duty diesel vehicles to achieve stringent Euro VI emission standards. Diesel particulate filter (DPF) is the most efficient system that is used to trap the particulate matter (PM), and particulate number (PN) emissions form diesel engines. The after-treatment system used in this study is catalyzed DPF (CDPF) downstream of diesel oxidation catalyst (DOC) with secondary fuel injection. Additional fuel is injected upstream of DOC to enhance exothermal heat which is needed to raise the CDPF temperature during the active regeneration process. The objective of this research is to numerically investigate soot loading and active regeneration of a CDPF on a heavy-duty diesel engine. In order to improve the active regeneration performance of CDPF, several factors are investigated in the study such as the effect of catalytic in filter wall, soot distribution form along filter wall, and soot loads.
Technical Paper

Development of Model Based Closed Loop Control Strategy of SCR System for Heavy-Duty Diesel Engines

2017-10-08
2017-01-2383
Urea selective catalytic reduction (SCR) is a key technology for heavy-duty diesel engines to meet the increasingly stringent nitric oxides (NOx) emission limits of regulations. The urea water solution injection control is critical for urea SCR systems to achieve high NOx conversion efficiency while keeping the ammonia (NH3) slip at a required level. In general, an open loop control strategy is sufficient for SCR systems to satisfy Euro IV and Euro V NOx emission limits. However, for Euro VI emission regulation, advanced control strategy is essential for SCR systems due to its more tightened NOx emission limit and more severe test procedure compared to Euro IV and Euro V. This work proposed an approach to achieve model based closed loop control for SCR systems to meet the Euro VI NOx emission limits. A chemical kinetic model of the SCR catalyst was established and validated to estimate the ammonia storage in the SCR catalyst.
Technical Paper

Experimental Study and Numerical Interpretation on the Temperature Field of DPF during Active Regeneration with Hydrocarbon Injection

2018-04-03
2018-01-1257
Diesel particulate filter (DPF) is indispensable for diesel engines to meet the increasingly stringent emission regulations. Both the peak temperature and the maximum temperature gradient of the DPF during active regeneration should be well controlled in order to enhance the reliability and durability of the filter. In this paper, the temperature field of the DPF during active regeneration with hydrocarbon (HC) injection was investigated with engine bench tests and numerical simulation. For the experimental study, 24 thermocouples were inserted into the DPF channels to measure the inner temperature of the filter to capture its temperature field, and the circumferential, axial and radial distribution of the filter temperature was analyzed to understand the DPF temperature field behavior during active regeneration.
Technical Paper

Numerical Analysis on the Potential of Reducing DPF Size Using Low Ash Lubricant Oil

2018-09-10
2018-01-1760
Diesel particulate filter (DPF) is necessary for diesel engines to meet the increasingly stringent emission regulations. Many studies have demonstrated that the lubricant derived ash has a significant effect on DPF pressure drop and engine fuel economy, and this effect becomes more and more severe with the increasing of operating hours of the DPF because the ash accumulated in the DPF cannot be removed by regeneration. It is reported that most of the DPFs operated with more ash than soot in the filter for more than three quarters of the time during its lifetime [1]. In order to mitigate this problem, the original engine manufacturers (OEM) tend to use an oversized DPF for the engine. However, it will increase the costs of the DPF and reduce the compactness of the engine aftertreatment system.
Technical Paper

Development of Model Predictive Control Strategy of SCR System for Heavy-Duty Diesel Engines with a One-State Control-Oriented SCR Model

2018-09-10
2018-01-1763
Urea-based selective catalytic reduction (SCR) of nitric oxides (NOx) is a key technology for heavy-duty diesel engines to achieve the increasingly stringent NOx emission standards. The aqueous urea injection control is critical for urea-SCR systems in order to achieve high NOx conversion efficiency while restricting the tailpipe ammonia (NH3) slip. For Euro VI emission regulation, an advanced control strategy is essential for SCR systems since its NOx emission limits are tighter and test procedure are more stringent compared to Euro IV and Euro V. The complex chemical kinetics of the SCR process has motivated model-based control design approaches. However, the model is too complex to allow real-time implementation. Therefore, it is very important to have a reduced order model for SCR control system.
X