Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Experimental Assessment of Instantaneous Heat Transfer in the Combustion Chamber and Exhaust Manifold Walls of Air-Cooled Direct Injection Diesel Engine

2008-04-14
2008-01-1326
An experimental analysis is carried out to investigate several heat transfer characteristics during the engine cycle, in the combustion chamber and exhaust manifold walls of a direct injection (DI), air-cooled, diesel engine. For this purpose, a novel experimental installation has been developed, which separates the engine transient temperature signals into two groups, namely the long-and the short- term response ones, processing the respective signals in two independent data acquisition systems. Furthermore, a new pre-amplification unit for fast response thermocouples, appropriate heat flux sensors and an innovative, object-oriented, control code for fast data acquisition have been designed and applied. Experimentally obtained cylinder pressure diagrams together with semi-empirical equations for instantaneous heat transfer were used as basis for the calculation of overall heat transfer coefficient.
Technical Paper

Development and Validation of a 3-D Multi-Zone Combustion Model for the Prediction of DI Diesel Engines Performance and Pollutants Emissions

1998-02-23
981021
A three-dimensional multi-zone combustion model is developed for the description of the combustion mechanism inside the engine cylinder of direct injection diesel engines. Various multi-zone models have been proposed in the past for the prediction of DI diesel engine performance and emissions. These models offer an alternative tool if one wants to avoid the use of other more complicated and sophisticated flow models that require high computational times. Most of them have the disadvantage that they focus mainly on emissions, failing to predict at the same time engine performance adequately. In almost all multi-zone models the resulting fuel jet after injection, which is divided into zones, is assumed to be symmetrical around its axis. In the present work a different approach is followed. The fuel jet is divided into zones in the three dimensions overcoming the need for the previous symmetry assumption.
Technical Paper

Evaluation of Various Dynamic Issues During Transient Operation of Turbocharged Diesel Engine with Special Reference to Friction Development

2007-04-16
2007-01-0136
The modeling of transient turbocharged diesel engine operation appeared in the early seventies and continues to be in the focal point of research, due to the importance of transient response in the everyday operating conditions of engines. The majority of research has focused so far on issues concerning thermodynamic modeling, as these directly affect heat release predictions and consequently performance and pollutants emissions. On the other hand, issues concerning the dynamics of transient operation are often disregarded or over-simplified, possibly for the sake of speeding up program execution time. In the present work, an experimentally validated transient diesel engine simulation code is used to study and evaluate the importance of such dynamic issues. First of all, the development of various forces (piston, connecting rod, crank and main crankshaft bearings) is computed and illustrated in order to evaluate the importance of abrupt load increases on the bearings durability.
Technical Paper

Experimental Investigation of Instantaneous Cyclic Heat Transfer in the Combustion Chamber and Exhaust Manifold of a DI Diesel Engine under Transient Operating Conditions

2009-04-20
2009-01-1122
In this paper, the results are presented from the analysis of the second stage of an experimental investigation with the aim to provide insight to the cyclic, instantaneous heat transfer phenomena occurring in both the cylinder head and exhaust manifold wall surfaces of a direct injection (DI), air-cooled diesel engine. Results from the first stage of the investigation concerning steady-state engine operation have already been presented by the authors in this series. In this second stage, the mechanism of cyclic heat transfer was investigated during engine transient events, viz. after a sudden change in engine speed and/or load, both for the combustion chamber and exhaust manifold surfaces. The modified experimental installation allowed both long- and short-term signal types to be recorded on a common time reference base during the transient event.
Technical Paper

The Effect of Various Dynamic, Thermodynamic and Design Parameters on the Performance of a Turbocharged Diesel Engine Operating under Transient Load Conditions

2004-03-08
2004-01-0926
Thermodynamic, dynamic and design parameters have a significant and often conflicting impact on the transient response of a compression ignition engine. Knowing the contribution of each parameter on transient operation could direct the designer to the appropriate measures for better engine performance. To this aim an explicit simulation program developed is used to study the performance of a turbocharged diesel engine operating under transient load conditions. The simulation developed, based on the filling and emptying approach, provides various innovations as follows: Detailed analysis of thermodynamic and dynamic differential equations, on a degree crank angle basis, accounting for the continuously changing nature of transient operation, analysis of transient mechanical friction, and also a detailed mathematical simulation of the fuel pump. Each equation in the model is solved separately for every cylinder of the 6-cylinder diesel engine considered.
Technical Paper

An Integrated Transient Analysis Simulation Model Applied in Thermal Loading Calculations of an Air-Cooled Diesel Engine Under Variable Speed and Load Conditions

1997-02-24
970634
A comprehensive transient analysis simulation model is used for the calculation of diesel engine performance under variable speed and load conditions. The analysis includes a detailed description of engine subsystems under transient conditions, thus accounting for the continuously changing character of transient operation, simulating among others the fuel injection, transient mechanical friction, heat losses to the walls and governor operation. The results of engine performance, at every time step during the transient event, are used as inputs for the formulation of thermal boundary conditions, which are needed for the calculation in a parallel way of the thermal transients propagating inside the engine structure.
Technical Paper

Experimental Heat Release Rate Analysis in Both Chambers of an Indirect Injection Turbocharged Diesel Engine at Various Load and Speed Conditions

2005-04-11
2005-01-0926
A heat release analysis of experimental pressure diagrams, appropriate for indirect injection (divided chamber) diesel engines, is developed and used to obtain heat release rate profiles during the combustion process in each combustion chamber. Attention is paid to the correct processing of the data, due to the inherent complexity of the mass interchange between the two combustion chambers. The analysis concerns a turbocharged, indirect injection diesel engine, having a very small pre-chamber and a very narrow connecting passageway, operated at various load and speed conditions, located at the authors' laboratory. An extended experimental work, at steady-state conditions, is conducted on a specially developed test bed configuration of this engine, which is connected to a high-speed data acquisition and processing system.
Technical Paper

Second-Law Analysis of Indirect Injection Turbocharged Diesel Engine Operation under Steady-State and Transient Conditions

2005-04-11
2005-01-1131
A second-law analysis is performed in both chambers of an indirect injection turbocharged diesel engine and the simulation program developed is used to study the second-law performance of the engine at various operating conditions, steady state and transient. The simulation developed is based on the filling and emptying approach and provides detailed analysis of thermodynamic, dynamic and second-law differential equations on a degree crank angle basis. It incorporates a detailed mathematical simulation of the fuel pump and solves each equation separately for each one of the six cylinders of the engine in hand. The model is validated against experimental data at steady state and transient conditions, obtained at the authors' laboratory. The prechamber rate and cumulative availability terms and irreversibilities are computed and depicted against the main chamber ones during the 720 degrees crank angle of an engine cycle.
Technical Paper

Modeling the Effects of EGR on a Heavy Duty DI Diesel Engine Using a new Quasi-Dimensional Combustion Model

2005-04-11
2005-01-1125
The model has already been applied on an old technology, naturally aspirated HSDI Diesel engine and on a heavy-duty turbocharged DI one equipped with a high pressure PLN fuel injection system, and the results were satisfying as far as performance and pollutant emissions (Soot and NO) are concerned. Taking into account that the main scope of engine simulation models is to assist engineers and researchers to understand the complex mechanisms involved in diesel engine combustion and pollutants formation and that through the continues engine development, new techniques are implemented, it is obvious that engine simulation models must always be enhanced with new features in order to be kept up-to-date. In this study the model has been modified to take into account the effect of EGR, since the latter one is a measure that will be used more extensively in the future to control NO emissions from turbocharged HDDI Diesel engines.
Technical Paper

Study of the Transient Behavior of Turbocharged Diesel Engines Including Compressor Surging Using a Linearized Quasi-Steady Analysis

2005-04-11
2005-01-0225
The transient operation of turbocharged diesel engines during turbocharger compressor surging is investigated through simulation. This form of compressor dynamic instability can generate large amplitude compressor mass flow and pressure rise oscillations, sometimes leading even to flow reversals, and may also induce severe torsional loading to the turbocharger shaft. A model predicting the dynamic behavior of the engine air-charging system when compressor surging occurs was developed in conjunction with a linearized quasi-steady diesel engine simulation code. This analysis possesses the advantage over the more detailed engine codes of basic simplicity, speed of calculation and no need of many engine and turbocharger components parameters given as input data. Emphasis is given to the correct modeling of the physics of the phenomena concerned. Transient operation runs, including critical cases for surging initiation, were applied for two similar six-cylinder diesel engines.
X