Refine Your Search

Topic

Author

Search Results

Journal Article

Development of a Predictive Model for Gasoline Vehicle Particulate Matter Emissions

2010-10-25
2010-01-2115
The relationship between gasoline properties and vehicle particulate matter emissions was investigated, for the purpose of constructing a predictive model. Various chemical species were individually blended with an indolene base fuel, and the solid particulate number (PN) emissions from each blend were measured over the New European Driving Cycle (NEDC). The results indicated that aromatics with a high boiling point and a high double bond equivalent (DBE) value tended to produce more PN emissions. However, high boiling point components with low DBE values, such as paraffins, displayed only a minor effect on PN. Upon further analysis of the test results, it was also confirmed that low vapor pressure components correlated with high PN emissions, as might be expected based on their combustion behavior. A predictive model, termed the “PM Index,” was constructed based on the weight fraction, vapor pressure, and DBE value of each component in the fuel.
Journal Article

A Study of Ignition Characteristics of an HCCI Engine Operating on a Two-component Fuel

2010-09-28
2010-32-0098
The Homogenous Charge Compression Ignition (HCCI) engine is positioned as a next-generation internal combustion engine and has been the focus of extensive research in recent years to develop a practical system. One reason is that this new combustion system achieves lower fuel consumption and simultaneous reductions of nitrogen oxide (NOx) and particulate matter (PM) emissions, which are major issues of internal combustion engines today. However, the characteristics of HCCI combustion can prevent suitable engine operation owing to the rapid combustion process that occurs accompanied by a steep pressure rise when the amount of fuel injected is increased to obtain higher power output. A major issue of HCCI is to control this rapid combustion so that the quantity of fuel injected can be increased for greater power. Controlling the ignition timing is also an issue because it is substantially influenced by the chemical reactions of the fuel.
Journal Article

Optical Measurement of Autoignition and Combustion Behavior in an HCCI Engine

2010-09-28
2010-32-0089
In this study, optical measurements were made of the combustion chamber gas during operation of a Homogeneous Charge Compression Ignition (HCCI) engine in order to obtain a better understanding of the ignition and combustion characteristics. The principal issues of HCCI engines are to control the ignition timing and to optimize the combustion state following ignition. Autoignition in HCCI engines is strongly influenced by the complex low-temperature oxidation reaction process, alternatively referred to as the cool flame reaction or negative temperature coefficient (NTC) region. Accordingly, a good understanding of this low-temperature oxidation reaction process is indispensable to ignition timing control. In the experiments, spectroscopic measurement methods were applied to investigate the reaction behavior in the process leading to autoignition.
Journal Article

Thermal Efficiency Enhancement of a Gasoline Engine

2015-04-14
2015-01-1263
The goal of this research was to improve thermal efficiency under conditions of stoichiometric air-fuel ratio and 91 RON (Research Octane Number) gasoline fuel. Increasing compression ratio and dilution are effective means to increase the thermal efficiency of gasoline engines. Increased compression ratio is associated with issues such as slow combustion, increased cooling loss, and engine knocking. Against these challenges, a higher stroke-bore ratio (S/B ratio) and a lower effective compression ratio were tried as countermeasures. With respect to increased dilution, combustion of a high-EGR (Exhaust Gas Recirculation) was tried. High-energy ignition and optimized combustion chamber shape with high tumble port were tried as countermeasures against slow combustion and reduced ignitability due to a higher EGR rate.
Journal Article

A Study of the Behavior of In-Cylinder Pressure Waves under HCCI Knocking by using an Optically Accessible Engine

2015-09-01
2015-01-1795
This study investigated the origin of knocking combustion accompanied by pressure wave and strong pressure oscillations in a Homogeneous Charge Compression Ignition (HCCI) engine. Experiments were conducted with a two-stroke single cylinder optically accessible engine that allowed the entire bore area to be visualized. The test fuel used was n-heptane. The equivalence ratio and intake temperature were varied to induce a transition from moderate HCCI combustion to extremely rapid HCCI combustion accompanied by in-cylinder pressure oscillations. Local autoignition and pressure wave behavior under each set of operating conditions were investigated in detail on the basis of high-speed in-cylinder visualization and in-cylinder pressure analysis. As a result, under conditions where strong knocking occurs, a brilliant flame originates from the burned gas side in the process where the locally occurring autoignition gradually spreads to multiple locations.
Journal Article

Effect of Streamer Discharge Assist on Combustion in a Supercharged HCCI Engine

2016-11-08
2016-32-0013
Homogeneous Charge Compression Ignition (HCCI) combustion has attracted widespread interest in recent years as a clean, high-efficiency combustion system. However, it is difficult to control the ignition timing in HCCI engines because they lack a physical means of inducing ignition. Another issue of HCCI engines is their narrow operating range because of misfiring that occurs at low loads and abnormal combustion at high loads. As a possible solution to these issues, this study focused on the application of a streamer discharge in the form of non-equilibrium plasma as a technique for assisting HCCI combustion. Experiments were conducted with a four-stroke single-cylinder engine fitted with an ignition electrode in the combustion chamber. A streamer discharge was continuously generated in the cylinder during a 720-degree interval from the intake stroke to the exhaust stroke.
Technical Paper

A Study of HCCI Combustion Using a Two-Stroke Gasoline Engine with a High Compression Ratio

2006-11-13
2006-32-0043
In this study, it was shown that Homogeneous Charge Compression Ignition (HCCI) combustion in a 4-stroke engine, operating under the conditions of a high compression ratio, wide open throttle (WOT) and a lean mixture, could be simulated by raising the compression ratio of a 2-stroke engine. On that basis, a comparison was then made with the characteristics of Active Thermo-Atmosphere Combustion (ATAC), the HCCI process that is usually accomplished in 2-stroke engines under the conditions of a low compression ratio, partial throttle and a large quantity of residual gas. One major difference observed between HCCI combustion and ATAC was their different degrees of susceptibility to the occurrence of cool flames, which was attributed to differences in the residual gas state. It was revealed that the ignition characteristics of these two combustion processes differed greatly in relation to the fuel octane number.
Technical Paper

Light Emission and Absorption Spectroscopic Study of HCCI Combustion

2009-06-15
2009-01-1846
In this study, light emission and absorption spectroscopic measurement techniques were used to investigate the Homogeneous Charge Compression Ignition (HCCI) combustion process in detail, about which there have been many unclear points heretofore. The results made clear the formation behavior and wavelength bands of the chemical species produced during low-temperature reactions. Specifically, with a low level of residual gas, a light emission band was observed from a cool flame in a wavelength range of 370–470 nm. That is attributed to the light emission of formaldehyde (HCHO) produced in the cool-flame reactions. Additionally, it was found that these light emission spectra were no longer observable when residual gas was applied. The light emission spectra of the combustion flame thus indicated that residual gas has the effect of moderating cool-flame reactions.
Technical Paper

A Macroscopic Understanding of the Controlled Auto-Ignition for Vehicle Engines

2010-09-28
2010-32-0086
By using a four-stroke gasoline engine equipped with a fully variable valve operation system, combustion performance was investigated from the aspect of a gas exchanging difference at various internal exhaust gas recirculation conditions due to the negative valve overlap variations. The in-cylinder gas temperature throughout the cycle process was analyzed thermodynamically. The experimental data revealed that in-cylinder gas temperature at the end of compression stroke (TAI) dominates the onset of autoignition and ΔT, which is an index that represents the heat capacity of the working gas, dominates the heat release of auto-ignition. This paper intends to evolve the experimental knowledge to an engineering tool, which could predict possibilities and limits of auto-ignition. As a result, a controlling mechanism of auto-ignition is proposed. According to this mechanism, a possible maximum load of auto-ignition operation is estimated and also demonstrated in the engine experiments.
Technical Paper

A Further Approach to Controlled Auto- Ignition Using a Sequence of Low-Temperature Combustion-States

2010-09-28
2010-32-0087
As an index to control the heat release of auto-ignition combustion, our previous paper introduced a concept of ΔT. It was the difference between the adiabatic flame temperature and the initial in-cylinder gas temperature before the heat release, i.e., ΔT physically represents the heat capacity of the in-cylinder gases relative to the calorific value supplied in a cycle. Firing tests of a four-stroke auto-ignition gasoline engine revealed that the heat release process could be successfully controlled when ΔT was maintained at a proper level. This paper evolved the ΔT theory into the every possible gas exchanging state in the four-stroke engines and found out a chain of the low-temperature combustion cycle (LTC), which continuously varied from the spark-ignition (SI) to auto-ignition (AI). By using a hydraulic-electromagnetic fully-free valve actuator system, the LTC was examined in our 650 cm₃ single-cylinder experimental-engine.
Technical Paper

Analysis of Knocking in an SI Engine based on In-cylinder: Spectroscopic Measurements and Visualization

2010-09-28
2010-32-0092
There are strong demands today to further improve the thermal efficiency of internal combustion engines against a backdrop of various environmental issues, including rising carbon dioxide (CO2) emissions and global warming. One factor that impedes efforts to improve the thermal efficiency of spark ignition engines is the occurrence of knocking. The aim of this study was to elucidate the details of knocking based on spectroscopic measurements and visualization of phenomena in the combustion chamber of a test engine that was operated on three primary reference fuels with different octane ratings (0 RON, 30 RON, and 50 RON). The ignition timing was retarded in the experiments to delay the progress of flame propagation, making it easier to capture the behavior of low-temperature oxidation reactions at the time knocking occurred.
Technical Paper

Measurement of Radical Behavior in Homogeneous Charge Compression Ignition Combustion Using Dimethyl Ether

2003-09-16
2003-32-0006
Attention has recently been focused on homogeneous charge compression ignition (HCCI) as an effective combustion process for resolving issues inherent to the nature of combustion. Dimethyl ether (DME; CH3OCH3) has attracted interest as a potential alternative fuel for compression ignition engines. We measured the HCCI process of DME in a test diesel engine by using a spectroscopic method. Simultaneous measurements were also done on exhaust emissions of hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NOx). Based on the experimental data, this paper discusses the relationship between the equivalence ratio and the observed tendencies.
Technical Paper

A Study of Knocking Using Ion Current and Light Emission

2003-09-16
2003-32-0038
This study attempted to elucidate combustion conditions in a progression from normal combustion to knocking by analyzing the ion current and light emission intensity that occurred during this transition. With the aim of understanding the combustion states involved, the ion current was measured at two positions in the combustion chamber. Light emission spectroscopy was applied to examine preflame reactions that are observed prior to autoignition in the combustion process of hydrocarbon fuels. The results obtained by analyzing the experimental data made clear the relationship between the ion current and light emission during the transition from normal combustion to knocking operation.
Technical Paper

An Analysis of Light Emission Intensity Behavior Corresponding to Intermediate Products in Different Places of the Combustion Chamber

2001-12-01
2001-01-1882
Knocking is one phenomenon that can be cited as a factor impeding efforts to improve the efficiency of spark-ignition engines. With the aim of understanding knocking better, light emission spectroscopy was applied in this study to examine preflame reactions that can be observed prior to autoignition in the combustion reaction process of hydrocarbon fuels. Attention was focused on light emission behavior at wavelengths corresponding to those of formaldehyde (HCHO), Vaidya's hydrocarbon flame band (HCO) and the OH radical in a forced progression from normal combustion to a knocking state. Light emission behavior was measured simultaneously in the center and in the end zone of the combustion chamber when the engine was operated on two different test fuels. The test fuels used were n-heptane (0 RON) and a blended fuel (70 RON) consisting of n-heptane (0 RON) and iso-octane (100 RON).
Technical Paper

A Study on the Knocking Characteristics of an SI-HCCI Engine by Using In-Cylinder Visualization

2016-11-08
2016-32-0005
In-cylinder visualization of the entire bore area at an identical frame rate was used to investigate knocking conditions under spark ignition (SI) combustion and under Homogeneous Charge Compression Ignition (HCCI) combustion in the same test engine. A frequency analysis was also conducted on the measured pressure signals. The results revealed that a combustion regime accompanied by strong pressure oscillations occurred in both the SI and HCCI modes, which was presumably caused by rapid autoignition with attendant brilliant light emission that took place near the cylinder wall. It was found that the knocking timing was the dominant factor of this combustion regime accompanied by cylinder pressure oscillations in both the SI and HCCI combustion modes.
Technical Paper

Influence of Supercharging and EGR on Multi-stage Heat Release in an HCCI Engine

2016-11-08
2016-32-0009
Homogeneous Charge Compression Ignition (HCCI) combustion has attracted widespread interest as a combustion system that offers the advantages of high efficiency and low exhaust emissions. However, it is difficult to control the ignition timing in an HCCI combustion system owing to the lack of a physical means of initiating ignition like the spark plug in a gasoline engine or fuel injection in a diesel engine. Moreover, because the mixture ignites simultaneously at multiple locations in the cylinder, it produces an enormous amount of heat in a short period of time, which causes greater engine noise, abnormal combustion and other problems in the high load region. The purpose of this study was to expand the region of stable HCCI engine operation by finding a solution to these issues of HCCI combustion.
Technical Paper

Influence of EGR on Knocking in an HCCI Engine Using an Optically Accessible Engine

2016-11-08
2016-32-0012
This study was conducted to investigate the influence of cooled recirculated exhaust gas (EGR) on abnormal combustion in a Homogenous Charge Compression Ignition (HCCI) engine. The condition of abnormal HCCI combustion accompanied by cylinder pressure oscillations was photographed with a high-speed camera using a 2-stroke optically accessible engine that enabled visualization of the entire bore area. Exhaust gas was cooled with a water-cooled intercooler for introducing cooled EGR. Experiments were conducted in which the quantity of cooled EGR introduced was varied and a comparison was made of the autoignition behavior obtained under each condition in order to investigate the influence of cooled EGR on abnormal HCCI combustion. The results revealed that cylinder pressure oscillations were reduced when cooled EGR was introduced. That reduction was found to be mainly ascribable to the effect of cooled EGR on changing the ignition timing.
Technical Paper

New Method to Estimate the Flow Rate of LPL-EGR Using Cylinder Pressure Sensor

2016-11-08
2016-32-0084
The accurate measurement of air volume is one of the critical issues in an LPL-EGR system, which has a large intake volume from the EGR valve to the combustion chamber compared to an HPL-EGR system. This includes the difficulty of measuring the flow rate of the LPL-EGR accurately. In this study, we investigated the EGR rate estimation logic with the cylinder pressure for an LPL-EGR system. This methodology is characterized by an EGR rate estimation, which uses the polytrophic change during the compression stroke, depending on the mixture and EGR rate. The polytrophic index is mainly changed by the EGR rate and the airflow rate. The EGR rate is estimated by the difference between measured pressure with sensors, and referenced pressure, which is calculated by measured parameters before compression with the assumption that the EGR rate is zero. To calculate the exact EGR rate, the influence of the air fuel ratio on the cylinder pressure was also taken into account.
Technical Paper

Development of Advanced and Low PGM TWC System for LEV2 PZ EV and LEV3 SULEV30

2012-04-16
2012-01-1242
A two-brick gasoline engine aftertreatment system with advanced washcoat technology was developed for LEV2 PZEV2 legislation, and its application to the upcoming LEV3 SULEV30 emission standard was demonstrated. The system was comprised of 1) a palladium only catalyst in the close coupled position with improved catalytic performance and high phosphorus poisoning resistance compared with 09MY technology, and 2) an underfloor palladium rhodium catalyst technology in which the nitric oxides (NOx) reduction activity was enhanced by preventing the deactivation of rhodium under rich conditions. As a result, the palladium only + palladium rhodium catalysts system met the LEV2 PZEV standard with three quarters of the PGM and half the rhodium of the system used on the Honda 09MY Accord vehicle. The system was also demonstrated to meet the LEV3 SULEV30 standard with some margin.
Technical Paper

A Study of Control Strategy for Combution Mode Switching Between HCCI and SI With the Blowdown Supercharging System

2012-04-16
2012-01-1122
To find an ignition and combustion control strategy in a gasoline-fueled HCCI engine equipped with the BlowDown SuperCharging (BDSC) system which is previously proposed by the authors, a one-dimensional HCCI engine cycle simulator capable of predicting the ignition and heat release of HCCI combustion was developed. The ignition and the combustion models based on Livengood-Wu integral and Wiebe function were implemented in the simulator. The predictive accuracy of the developed simulator in the combustion timing, combustion duration and heat release rate was validated by comparing to experimental results. Using the developed simulator, the control strategy for the engine operating mode switching between HCCI and SI combustion was explored with focus attention on transient behaviors of air-fuel ratio, A/F, and gas-fuel ratio, G/F.
X