Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Joint PAJ/JAMA Project - Development of a JASO Gasoline Bench Engine Test for Measuring CCDs

1997-10-01
972837
Detergent additives in automotive gasoline fuel are mainly designed to reduce deposit formation on intake valves and fuel injectors, but it has been reported that some additives may contribute to CCD formation. Therefore, a standardized bench engine test method for CCDs needs to be developed in response to industry demands. Cooperative research between the Petroleum Association of Japan (PAJ) and the Japan Automobile Manufacturers Association, Inc. (JAMA), has led to the development of a 2.2L Honda engine dynamometer-based CCD test procedure to evaluate CCDs from fuel additives. Ten automobile manufacturers, nine petroleum companies and the Petroleum Energy Center joined the project, which underwent PAJ-JAMA round robin testing. This paper describes the CCD test development activities, which include the selection of an engine and the determination of the optimum test conditions and other test criteria.
Technical Paper

Effect of Gasoline Composition on Engine Performance

1993-03-01
930375
In order to clarify the effect of each gasoline component on engine performance during warm-up, changes in the air-fuel ratio and quantity of wall flow (liquid gasoline on the induction port) were measured using ordinary gasolines and model gasolines consisting of a blend of several hydrocarbons and MTBE (methyl-tertiary-butyl-ether). The unburned air-fuel mixture in a combustion chamber was sampled via a solenoid valve and analyzed by gas chromatography to investigate the vaporization rate of each component. The results show that MTBE has an important effect on driveability because it contains oxygen and easily vaporizes, resulting in a lean mixture in the transient state. The popular driveability index, T50 (50% distillation temperature), does not provide an adequate means of evaluating MTBE-blended gasoline.
Technical Paper

The Development of Driveability Index and the Effects of Gasoline Volatility on Engine Performance

1995-10-01
952521
To reduce engine exhaust emissions, we have had to deal with this global environmental problem from the fuel side by introducing oxygenated fuels, reducing the RVP and using low aromatics. But when we change the fuel components and distillation, we must take note about how these affect the engine driveability. We have used T50, T90, RVP and so on as the fuel index up to the present. It is possible to characterize the fuel from one aspect, but these indexes don't always represent the real feature of the fuel. In this paper we propose a New Driveability Index (here in after referred to as NDI) that is more realistic and accurate than the other fuel indexes. We used a 1600cc DOHC L4 MPI type engine. We used Model Gasolines and Market Gasolines, see Appendix(1), (2) and (3), and tested them according to the Excess Air Ratio Response Test Method (here in after referred to as λ-R Test) that was suggested in SAE paper #930375, and we calculated the NDI statistically.
X