Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development of Diagnostic Data Link Protocol

This paper describes a multiplexed communication protocol matched to vehicle diagnosis, which has become more complicated due to the greater sophistication of Electronic Control Units (ECUs). The diagnostic data link must be both flexible enough for complex applications and economical enough for most ECUs. First, an asynchronous communication method controlled by an external clock, one function of a CPU with UART, is employed to minimize ECU hardware cost. Second, a polling/selecting method comprising a set of diagnostic commands and a practical data link procedure is developed to minimize the ECU software burden. The result is a cost effective, easy-to-protocol.
Technical Paper

New Fuel Injection Method for Better Driveability

In our new fuel injection method, the injector for each cylinder is triggered twice per combustion cycle. The first injection is triggered as early as possible to obtain a good fuel mixture quality. The second injection is triggered as late as possible and as close to the intake valve opening so as to obtain a constant air-fuel ratio even during rapid acceleration. Furthermore, in order to prevent, misfire, timing is calculated based on the fuel amount when the fuel injection occurs. Driveability is improved over a wider range of driving conditions while maintaining good fuel economy and omission control.
Technical Paper

Development of the Nissan Fuel Cell Vehicle

Nissan has recently developed and begun driving tests of a fuel cell vehicle equipped with a methanol reformer that produces hydrogen through the use of a catalyst to induce chemical reactions between methanol and water. With this onboard fuel cell system, only methanol in the form of a liquid fuel needs to be supplied, making the system highly practical as an automotive powertrain for near-future application. The Nissan Fuel Cell Vehicle (FCV) adopts a high-efficiency neodymium magnet synchronous traction motor combined with lithium-ion batteries that enable the vehicle to achieve optimum electric power by switching between a fuel cell-powered driving mode and a battery-powered driving mode. This presentation will cover the current status of the FCV development program and driving test results.