Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Comparison of Head Kinematics of Bicyclist in Car-to-Bicycle Impact

2020-04-14
2020-01-0932
This study focused on European NCAP activities of introducing a new head protection evaluation procedure, as proposed by BASt (Federal Highway Research Institute - GERMANY). Various kinds of E-bikes are available in the market, ranging from E-bikes that have a small motor to assist the rider’s pedal-power i.e., pedelecs to somewhat more powerful E-bikes which is similar to a moped-style scooter. This paper focused on identifying the factors influencing bicyclist head kinematics during bicycle vs. passenger vehicle (PV) collisions at the intersection. Two AM50 bicyclist FE models are developed using i) GHBMC Human Body Model (HBM) and ii) WorldSID (WS) side impact dummy. Head kinematics of bicyclists of pedal-assist E-bike and normal bike were compared using CAE simulation. It is found that the vehicle’s impact velocity, type of bicycle, the mass of E-bike and bicycle traveling speed will influence the head kinematics.
Technical Paper

Investigation of a Test Method to Reproduce Car-to-Car Side Impacts

2020-04-14
2020-01-1221
A side impact is one of the severest crash configurations among real-world accidents. In the US market, even though most vehicles have achieved top ratings in crash performance assessment programs in recent years, there has hardly been any sign of a decline in side-impact fatalities for the last few years, according to statistics retrieved from the National Highway Traffic Safety Administration’s Fatality Analysis Reporting System. In response to this trend, the Insurance Institute for Highway Safety (IIHS) is planning to introduce a new test protocol for side impact assessment. One of the points to be clarified in current side impact tests is whether the present side moving deformable barrier (MDB), which includes the barrier face and cart, faithfully reproduces a real-world car-to-car crash.
Technical Paper

Multi-parameter, Multi-objective Optimization of Injury Indexes of Vehicle Crash Models

2005-04-11
2005-01-1302
This paper presents a method for optimizing occupant restraint system parameters in vehicle frontal crashes. Simulation models incorporating restraint systems and dummies are used for predicting injury indexes. A full-scale survey of all of the design parameters related to the injury indexes would require a vast number of simulations. Therefore, the Design of Experiments (DOE) method involving a minimum number of experiments is more realistic. However, dummy behavior often shows discontinuity if the dummy comes in contact with the steering wheel, so it is not predicted well with usual DOE methods. This paper shows how to incorporate such discontinuity in a DOE study and how to optimize the restraint system parameters to reduce occupant injury indexes. It also discusses the feasibility of this method for integrated optimization of 50th percentile and 5th percentile dummies.
Technical Paper

Compatibility for Frontal Impact Collisions Between Heavy and Light Cars

2003-05-19
2003-06-0176
Recently, frontal impact compatibility is discussed internationally and various procedures to assess compatibility and various measures to improve compatibility have been proposed. Considering the above, car-to-car tests between a heavy car and a light car were conducted to clarify the effect of homogenizing the front structure on compatibility. Then correlation between the results of the barrier impact tests proposed as the procedures to assess compatibility and the car-to-car test results and the requirements for the assessment procedure were discussed.
Technical Paper

Real World Accident Analysis of Driver Car-to-Car Intersection Near-Side Impacts: Focus on Impact Location, Impact Angle and Lateral Delta-V

2018-04-03
2018-01-1328
In total, 865 intersection car-to-car crashes (NASS-CDS CY 2004-2014) are analyzed in detail to determine the injury level outcome based on different crash factors, such as delta-V, age, airbag deployment, number of events, impact locations (F,Y,P,Z,D,B-regions based on CDC codes), amount of compartment intrusion and impact angle. A multivariate logistic regression test was performed to predict the probability of MAIS3+ serious injuries using lateral delta-V, location of maximum deformation from B-PLR, age (0: <60/1: ≥60 years), number of events (0: single/ 1: multiple), intrusion (0: <16cm/ 1: ≥16cm), side airbag deployment (yes/no) and direction of impact (0: 9/ 1: 10 o’clock). It is found that direction of impact is one of the significant (p<0.05) parameters and 10 o’clock angle impact has more influence than 9 o’clock perpendicular lateral impact. Frequency of AIS3+ injuries was high in Y-region impact cases.
X