Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Performance of a CVT Fluid for High Torque Transmitting Belt-CVTs

1998-10-19
982675
A new belt-drive continuously variable Transmission (B-CVT) was introduced into the Japanese market in September 1997 by Nissan Motor Co., Ltd. It transmits a maximum torque of 196 Nm and represents a major breakthrough of the torque limit transmitted by B-CVTs, thus opening a new epoch for the automatic transmission. The major features of the CVT are transmission of high torque between a steel belt and pulleys, electronic control of high hydraulic-pressure to pulleys and a torque converter with an electronically controlled lockup clutch engaging at low vehicle speeds. A CVT fluid formulated for this CVT was designed to optimize these features and this paper describes the performance of the CVT fluid in lab-scale tests and an endurance test of the CVT unit. In order to realize high torque transmission between a steel belt and pulleys, high friction between metal/metal contacts is required with normal wear.
Technical Paper

The Effect of Belt-Drive CVT Fluid on the Friction Coefficient Between Metal Components

1997-10-01
972921
A block-on-ring friction and wear testing machine (LFW-1) was used as a test method for making fundamental evaluations of the effect of the Belt-Drive Continuously Variable Transmission(B-CVT) fluid on the friction coefficient between the belt and pulleys. The results confirmed that this method can simulate the friction phenomena between the belt and pulleys of an actual transmission. The mechanism whereby ZDDP and some Ca detergents improve the torque capacity of a B-CVT was also investigated along with the effect of the deterioration of these additives on the friction coefficient. It was found that these additives form a film, 80-90 nm in thickness, on the sliding surface, which is effective in increasing the friction coefficient. The friction coefficient declined with increasing additive deterioration. The results of a 31P-NMR analysis indicated that the decline closely correlated with the amount of ZDDP in the B-CVT fluid.
Technical Paper

Development of 0W-20 ILSAC GF-3 Gasoline Engine Oil

2002-05-06
2002-01-1636
A new 0W-20 gasoline engine oil was developed to improve fuel economy over ILSAC GF-2 5W-20 gasoline engine oils and to meet ILSAC GF-3 requirements. The main improvements made were to viscosity and friction modifiers. Viscosity at 80°C was adjusted to obtain better fuel economy than with 5W-20 oil in the Japanese 10-15 mode test. Therefore, low-temperature viscosity decreased to 0W and high-temperature high-shear viscosity exceeds 2.6 mPa?s. Friction modifiers and other additives were investigated to find the lowest friction characteristics. The resulting formulation shows more than a 2.0% fuel economy gain in the Japanese 10-15 mode test and the new oil has been certified as meeting ILSAC GF-3 requirements.
Technical Paper

Impact of Oil-derived Ash on Continuous Regeneration-type Diesel Particulate Filter - JCAPII Oil WG Report

2004-06-08
2004-01-1887
Impact of oil-derived ash on the pressure drop of continuous regeneration-type diesel particulate filter (CR-DPF) was investigated through 600hrs running test at maximum power point on a 6.9L diesel engine, which meets the Japanese long-term emission regulations enacted in 1998, using approximately 50ppm sulfur content fuel. Sulfated ash content of test oils were varied as 0.96, 1.31, and 1.70 mass%, respectively. During the running test, the exhaust pressure drop through CR-DPF was measured. And after the test, the ventilation resistance through CR-DPF was also evaluated before and after the baking process, which was applied to eliminate the effect of soot accumulated in CR-DPF. The results revealed that the less sulfated ash in oil gave rise to lower pressure drop across CR-DPF. According to microscope examination of the baked DPF, ash was mainly accumulated on the wall surface of CR-DPF, and that seemed to be related to the magnitude of pressure drop caused by ash.
X