Refine Your Search

Topic

Author

Search Results

Journal Article

A Study of Combustion Technology for a High Compression Ratio Engine: The Influence of Combustion Chamber Wall Temperature on Knocking

2016-04-05
2016-01-0703
Technologies for improving the fuel economy of gasoline engines have been vigorously developed in recent years for the purpose of reducing CO2 emissions. Increasing the compression ratio is an example of a technology for improving the thermal efficiency of gasoline engines. A significant issue of a high compression ratio engine for improving fuel economy and low-end torque is prevention of knocking under a low engine speed. Knocking is caused by autoignition of the air-fuel mixture in the cylinder and seems to be largely affected by heat transfer from the intake port and combustion chamber walls. In this study, the influence of heat transfer from the walls of each part was analyzed by the following three approaches using computational fluid dynamics (CFD) and experiments conducted with a multi-cooling engine system. First, the temperature rise of the air-fuel mixture by heat transfer from each part was analyzed.
Technical Paper

Application of CAE Technology to the Development of Plastic Automotive Components

1991-02-01
910877
The use of CAE software in developing plastic components has advanced rapidly in recent years. This progress has been supported by the development of practical analytical tools, based on the finite element and boundary element methods, and on the dramatic improvements seen in computer performance. Following the introduction of a flow analysis program in 1982, Nissan has developed and implemented advanced programs for use in developing plastic components and has integrated the programs into a unified in-house system. This system is being utilized at the design and manufacturing stages of interior and exterior trim parts and has produced concrete results in different phases of component development. Work is now proceeding on the development of a system that can simultaneously analyze both the component performance and the factors that need to be considered in the manufacturing process.
Technical Paper

A New CAD/CAM System for the Car Design Process

1991-02-01
910817
Sophisticated product designs enrich people's lives and social demands for creation of good designs are quite strong. In the automobile industry, good design quality is one of the principal factors for determining market competitiveness. In this situation where good design quality is required of every product, the authors have developed a CAD/CAM system which makes it possible to create good and accurate designs by translating designers' ideas directly and quickly into high quality CAD models, a capability that has long been desired. With this high performance system, freely formed curves and surfaces can be easily manipulated with a man-machine interface familiar to industrial designers accutomed to the conventional design process. The system also integrates photo-realistic rendering, stereography and NC milling machines for verifying differences between the realized shape and the image in the designer's mind.
Technical Paper

Direct Heat Loss to Combustion Chamber Walls in a D.I. Diesel Engine-Development of Measurement Technique and Evaluation of Direct Heat Loss to Cylinder Liner Wall

2007-09-16
2007-24-0006
The purpose of this study is to clarify the state of heat loss to the cylinder liner of the tested engine of which piston and cylinder head were previously measured. The authors' group developed an original measurement technique of instantaneous surface temperature at the cylinder liner wall using thin-film thermocouples. The temperature was measured at 36 points in total. The instantaneous heat flux was calculated by heat transfer analysis using measurement results of the temperature at the wall. As a result, the heat loss ratio to all combustion chamber walls is evaluated except the intake and exhaust valves.
Technical Paper

The Development of a High Speed Steel Based Sintered Material for High Performance Exhaust Valve Seat Inserts

1998-02-23
980328
The demands on valve seat insert materials, in terms of providing greater wear-resistance at higher temperatures, enhanced machinability and using non-environmentally hazardous materials at a reasonably low cost have intensified in recent years. Due therefore to these strong demands in the market, research was made into the possibility of producing a new valve seat insert material. As a result a high speed steel based new improved material was developed, which satisfies the necessary required demands and the evaluation trials, using actual gasoline engine endurance tests, were found to be very successful.
Technical Paper

A Voxel-Based Approach to Structural Analysis That Includes Consideration of Contact Conditions

1998-02-01
980304
A voxel model, which consists of minute cubic cells called voxels to express the shape of an object, can now be generated automatically from CAD data. Moreover, advances in high-speed computational techniques have made it possible to perform a structural analysis using such a voxel model. This paper presents some high-speed computational techniques to realize the analysis in practice and a method to treat a contact condition on the jagged surface that characterizes a voxel model to further expand the scope of application.
Technical Paper

Trends in Vehicle Information Displays in the Multimedia Era

1998-10-19
98C035
Flat panel displays for automobiles are facing a new era with the development of navigation systems. As navigation systems become more important as driver's assistance devices, development of birds-eye-view and 3D displays continues, as well as improvements for larger display screens and higher mounting positions. In response to the progress of mobile multimedia technologies, demands for larger display screens and larger aspect ratios have been increasing. Significance for improvements to anti-glare features or view angles has increased as they provide better visibility and the increase layout options. The use of human machine information interaction, which interfaces visual, audio and tactile senses, makes it possible to realize safer, more convenient and comfortable multimedia era vehicle
Technical Paper

Thermal Imaging Technology using a Thermoelectric Infrared Sensor

2008-04-14
2008-01-0912
This paper describes a low-cost 48 × 48 element thermal imaging camera intended for use in measuring the temperature in a car interior for advanced air conditioning systems. The compact camera measures 46 × 46 × 60 mm. It operates under a program stored in the central processing unit and can measure the interior temperature distribution with an accuracy of ±0.7°C in range from 0 to 40°C. The camera includes a thermoelectric focal plane array (FPA) housed in a low-cost vacuum-sealed package. The FPA is fabricated with the conventional IC manufacturing process and micromachining technology. The chip is 6.5 × 6.5 mm in size and achieves high sensitivity of 4,300 V/W, which is higher than the performance reported for any other thermopile. This high performance has been achieved by optimizing the sensor's thermal isolation structure and a precisely patterned Au-black absorber that attains high infrared absorptivity of more than 90%.
Technical Paper

Prediction of Seat Vibration with a Seated Human Subject Using a Substructure Synthesis Method

2004-03-08
2004-01-0371
A seat vibration prediction technique using a substructure synthesis method was developed for use in ride comfort evaluations. The human body was modeled as a vibration transfer matrix using the mean apparent mass of human subjects, based on data measured in advance. Seat vibration characteristics were measured with rigid masses on the seat. The measured data and vibration transfer matrix of the human body were synthesized using a substructure synthesis method, to predict vibration of the seat cushion and backrest in an occupant-loaded condition without actually using human subjects. Results showed that seat vibration predicted with this method was very similar to, and more repeatable than, that obtained experimentally with human subjects.
Technical Paper

The Development of a Cobalt-Free Exhaust Valve Seat Insert

2004-03-08
2004-01-0502
Generally, cobalt-contained sintered materials have mainly been applied for exhaust valve seat inserts (VSI). However, there is a trend to restrict the use of cobalt as well as lead environmental law, and cobalt is expensive. To solve these problems, a new exhaust VSI on the assumption of being cobalt and lead free, applicable for conventional engines, having good machinability, and with a reduced cost was developed. The new exhaust VSI is a material dispersed with two types of hard particles, Fe-Cr-C and Fe-Mo-Si, in the matrix of an Fe-3.5mass%Mo at the ratio of 15 mass % and 10 mass % respectively.
Technical Paper

Numerical Analysis of the Exhaust Gas Flow and Heat Transfer in a Close-Coupled Catalytic Converter System During Warm-Up

2001-03-05
2001-01-0943
A new multidimensional calculation method has been developed to simulate the warm-up characteristics of close-coupled catalytic converter systems. First, a one-dimensional gas exchange simulation and a three-dimensional exhaust gas flow calculation are combined to simulate the pulsation gas flow caused by the gas exchange process. The gas flow calculation and a heat transfer calculation are then combined to simulate heat transfer in the exhaust manifold and the catalyst honeycomb under pulsation flow. The predicted warm-up characteristics of the systems examined agreed well with the experimental data. In this simulation, CPU time was reduced greatly through the use of new calculation methods. Finally, the warm-up process of close-coupled catalysts is analyzed in detail with this simulation method. The design requirements for improving warm-up characteristics have been made clear.
Technical Paper

Thermal Fatigue Life of Exhaust Manifolds Predicted by Simulation

2002-03-04
2002-01-0854
A combined computational fluid dynamics (CFD) and finite element (FE) analysis approach has been developed to simulate in the early stages of design the temperature distribution and estimate the thermal fatigue life of an engine exhaust manifold. To simulate the temperature distribution under actual operating conditions, we considered the external and internal flow fields. Digital mock-ups of the vehicle and engine were used to define the geometry of the engine compartment. External-air-flow simulation using in-house CFD code was used to predict the flow fields in the engine compartment and the heat transfer coefficients between the air and the exhaust manifold wall at various vehicle speeds. Unsteady-gas-flow calculation using the STAR-CD thermal- fluids analysis code was to predict the heat transfer coefficients between the exhaust gas and the manifold wall under various operating conditions.
Technical Paper

Development of ROM Management and Evaluation System for Electronic Transmission Control Units

1992-02-01
920768
Electronic control of automatic transmission systems have become indispensable in order to satisfy driver expectations of comfort and vehicle response. The increasing complexity of such systems has resulted in a huge increase of control data volumes handled by electronic transmission control units (ETCUs). This paper describes the development, operation and evaluation by JATCO Corporation and Nissan Motor Co., Ltd of a Read Only Memory (ROM) management system for use with ETCUs. The system makes extensive use of computer aided design(CAD) techniques to create ROM data from standard format drawings, and vice-versa. The paper also presents the evaluation system developed for ETCU use. Making use of computer simulated testing, this increases the reliability of units and reduces testing time.
Technical Paper

Development of a Practical DSP Car Audio System

1992-02-01
920081
Digital signal processors (DSPs) are being used widely for sound field reproduction. However, it is difficult to apply a DSP to a car audio system because of the complicated acoustic characteristics of the passenger compartment. The authors have developed a new car audio system which employs special DSP software and a new speaker layout to provide excellent presence. The DSP has five output channels to generate stereophonic reflection from the front and rear speakers. The DSP software is programmed for each individual car model. A center speaker and A-pillar tweeters are used to produce a natural sound field in front through effective utilization of reflection from the windshield. This system is featured in 1992 Nissan models.
Technical Paper

Analysis of Interior Airflow in a Full-Scale Passenger-Compartment Model Using a Laser-Light-Sheet Method

1992-02-01
920206
Flow velocity distributions in the passenger compartment were measured from visualized images of particle flow paths obtained with a full-scale model. The flow paths were visualized using an approach that combined a particle tracing method with a pulse-laser light technique. Air was used as the fluid medium with the full-scale passenger compartment model and water was used as the fluid medium with a one-fourth scale model. A comparison of the results obtained with the two models confirmed that there was good agreement between the flow velocity distributions. Using the full-scale model, measurements were also made of the flow velocity distributions when two dummies were placed in the front-seats.
Technical Paper

Development of an Automotive Air Conditioning System Using the HFC-134a Refrigerant

1992-02-01
920216
Regulations on the use of chlorofluorocarbons (CFCs) are being adopted around the world to protect the ozone layer from these chemicals. It is Nissan's position that environmental protection is one of the most important issues facing automotive engineers today. Accordingly, with the aim of ensuring a healthier environment, we have been working for approximately three years on the development of an automotive air conditioning system using the HFC-134a refrigerant in place of CFC-12. Starting with the introduction of this air conditioning system in a new production model scheduled for release in March 1992, the system is expected to be used in all new models for North America by the end of 1993. This paper describes the HFC-134a automotive air conditioning system from the standpoint of the design changes required in comparison with a conventional CFC-12 system and technical measures needed for vehicle application.
Technical Paper

Application of CAP to Analyze Mechanisms Producing Dummy Injury Readings under U.S. Side Impact Test Conditions

2011-04-12
2011-01-0014
Evaluations of dummy injury readings obtained in regulatory crash tests and new car assessment program tests provide indices for the development of crash safety performance in the process of developing new vehicles. Based on these indices, vehicle body structures and occupant restraint systems are designed to meet the required occupant injury criteria. There are many types of regulatory tests and new car assessment program tests that are conducted to evaluate vehicle safety performance in side impacts. Factoring all of the multiple test configurations into the development of new vehicles requires advanced design capabilities based on a good understanding of the mechanisms producing dummy injury readings. In recent years, advances in computer-aided engineering (CAE) tools and computer processing power have made it possible to run simulations of occupant restraint systems such as side airbags and seatbelts.
Technical Paper

A Study for Understanding Carsickness Based on the Sensory Conflict Theory

2006-04-03
2006-01-0096
Two hypotheses based on the sensory conflict theory were postulated as possible means for reducing carsickness: (1) Reducing signals from the vestibular and vision systems through a reduction of low-frequency motion would mitigate carsickness and (2) Controlling stimulation of visual organs so as to reduce the amount of sensory conflict would mitigate carsickness. For hypothesis (1), the relations between subjective carsickness ratings and motions of the vehicle and passengers' body were investigated. Greater correlation was found between carsickness ratings and motions of the passengers' head, where the organs of the vestibular and vision systems are located, than between carsickness ratings and vehicle motions. For hypothesis (2), the incidence of carsickness in passengers who gazed at an in-vehicle display was investigated because there seemed to be large conflict between the vestibular system and the vision system.
Technical Paper

Development of a New Driving Posture Focused on Biomechanical Loads

2006-04-03
2006-01-1302
Fatigue resulting from long-term driving can be classified into physical and mental fatigue. Physical fatigue seems to be mainly caused by driving posture. The purpose of this study is to develop a new driving posture for reduction of causal factors of physical fatigue, that is, biomechanical loads caused by the posture. In this paper, driving posture was optimized by subjective optimizations of seat contours and biomechanical analysis considering necessary conditions for driving operations and forward view. The new driving posture was tested by subjective evaluations and pelvic movement measurements. It was found that the new posture reduced physical fatigue dramatically.
Technical Paper

Evaluation of an Open-grill Vehicle Aerodynamics Simulation Method Considering Dirty CAD Geometries

2018-04-03
2018-01-0733
In open-grille vehicle aerodynamics simulation using computational fluid dynamics, in addition to basic flow characteristics, such as turbulent flow with a Reynolds number of several million on the bluff body, it is important to accurately estimate the cooling air flow introduced from the front opening. It is therefore necessary to reproduce the detailed geometry of the entire vehicle including the engine bay as precisely as possible. However, there is a problem of generating a good-quality calculation grid with a small workload. It usually takes several days to a week for the pretreatment process to make the geometry data ‘clean’ or ‘watertight’. The authors proposed a computational method for complex geometries with a hierarchical Cartesian grid and a topology-independent immersed boundary method with dummy cells that discretize the geometry on a cell-by-cell basis and can set an imaginary point arbitrarily.
X