Refine Your Search



Search Results

Technical Paper

Effects of Gas Flow and Mixture Properties on Engine-Out HC Emissions

The geometry and area of the notch in the swirl control valve installed in the intake port were varied to analyze the effects on HC emissions. A swirl control valve functions to promote the formation of a homogeneous mixture, enabling the amount of liquid fuel supplied to the cylinder to be reduced. For this reason, it is difficult to obtain an added effect through the combined use of a swirl control valve and an auxiliary-air type of injector for assisting fuel atomization. Tumble (vertical swirl) flow fields are effective in shortening the combustion period. This results in a higher exhaust gas temperature at an equivalent level of combustion stability. It was thought that swirl flow fields produce residual gas flow in the cylinder after the completion of the main combustion period. It is surmised that the residual gas flow functions to diffuse and promote after-burning of the unburned HC layer.
Technical Paper

Effects of Swirl/Tumble Motion on In-Cylinder Mixture Formation in a Lean-Burn Engine

Flow measurement by laser Doppler velocimetry and visualization of in-cylinder fuel vapor motion by laser induced fluorescence were performed for various types of intake systems that generated several different combinations of swirl and tumble ratios. The measured results indicate that certain swirl and tumble ratios are needed to achieve charge stratification in the cylinder. Performance tests were also carried out to determine the combustion characteristics of each intake system. Then, the features of combustion when the charge stratification was realized was analyzed.
Technical Paper

Development of a High-Pressure Fueling System for a Direct-Injection Gasoline Engine

A direct-injection gasoline engine that uses a stratified charge combustion process was developed by Nissan and released in the Japanese market toward the end of 1997. This new engine is based on Nissan's VQ engine, which enjoys a good reputation for its quick throttle response and low fuel consumption, and has been developed to accomplish the objectives of reducing fuel consumption by stratified charge combustion and securing high power output. The fuel injectors are connected by an arrangement of lightweight, small-diameter fuel lines that distribute fuel to each injector under high pressure. This system was adopted in order to reconcile the use of an aerodynamic straight intake port with the desired fuel injection position. The use of a casting net injector, which uniformly distributes the fuel spray above the piston, makes it possible to accomplish stratified charge combustion with a shallow-bowl piston.
Technical Paper

Numerical Optimization of the Fuel Mixing Process in a Direct-Injection Gasoline Engine

The spray formation and mixing processes in a direct-injection gasoline engine are examined by using a sophisticated air flow calculation model and an original spray model. The spray model for a spiral injector can evaluate the droplet size and spatial distribution under a wide range of parameters such as the initial cone angle, back pressure and injection pressure. This model also includes the droplet breakup process due to wall impingement. The arbitrary constants used in the spray model are derived theoretically without using any experimental data. Fuel vapor distributions just before ignition and combustion processes are analyzed for both homogeneous and stratified charge conditions.
Technical Paper

Mixture Formation and Combustion Performance in a New Direct-Injection SI V-6 Engine

One advantage of a direct-injection S.I. engine is lower fuel consumption due to the use of lean stratified charge combustion. Another advantage is greater power output resulting from evaporation of the fuel in the cylinder. A critical factor in making the most of these advantages is to achieve optimum mixture formation for both stratified and homogeneous charge combustion. To achieve the optimum mixture, the new direct-injection S.I. V-6 engine adopts a piston with a shallow bowl, a valve that changes in-cylinder air motion between swirl and tumble by opening and closing one side of separated air intake port, an air intake port that has optimized inward and port angle to induces swirl in the piston bowl, and a CASTING NET injector that injects the hollow cone spray in a deflected pattern toward the spark plug.
Technical Paper

Turbulence and Cycle-by-Cycle Variation of Mean Velocity Generated by Swirl and Tumble Flow and Their Effects on Combustion

Combinations of swirl flow and tumble flow generated by 13 types of swirl control valve were tested by using both impulse steady flow rig and LDV. Comparison between the steady flow characteristics and the result of LDV measurement under motoring condition shows that tumble flow generates turbulence in combustion chamber more effectively than swirl flow does, and that swirling motion reduces the cycle by cycle variation of mean velocity in combustion chamber which tends to be generated by tumbling motion. Performance tests are also carried out under the condition of homogeneous charge. Tumble flow promotes the combustion speed more strongly than expected from its turbulence intensity measured by LDV. It is also shown that lean limit air fuel ratio does not have a strong relation with cycle variation of mean velocity but with turbulence intensity.
Technical Paper

Effect of Engine Design/Control Parameters and Emission Control Systems on Specific Reactivity of S.I. Engine Exhaust Gases

In 1994, the California Air Resources Board implemented low-emission vehicle (LEV) standards with the aim of improving urban air quality. One feature of the LEV standards is the increasingly tighter regulation of non-methane organic gases (NMOG), taking into account ozone formation, in addition to the existing control of non-methane hydrocarbons (NMHC). Hydrocarbons and other organic gases emitted by S.I. engines have been identified as a cause of atmospheric ozone formation. Since the reactivity of each chemical species in exhaust emissions differs, the effect on ozone formation varies depending on the composition of the exhaust gas components. This study examined the effect of different engine types, fuel atomization conditions, turbulence and emission control systems on emission species and specific reactivity. This was done using gas chromatographs and a high-performance liquid chromatograph to analyze exhaust emission species that affect ozone formation.
Technical Paper

Three-Dimensional Computation of the Effects of the Swirl Ratio in Direct-Injection Diesel Engines on NOx and Soot Emissions

Three-dimensional computation has been applied to analyze combustion and emission characteristics in direct-injection diesel engines. A computational code called TurboKIVA was used to investigate the effects of the swirl ratio, one of the fundamental factors related to combustion control, on combustion characteristics and NOx and soot emissions. The code was first modified to calculate soot formation and oxidation and the precise behavior of fuel drops on the combustion chamber wall. As a result of improving calculation accuracy, good agreement was obtained between the measured and predicted pressure, heat release rate and NOx and soot emissions. Using this modified version of TurboKIVA, the effects of the swirl ratio on NOx and soot emissions were investigated. The computational results showed that soot emissions were reduced with a higher swirl ratio. However, a further increase in the swirl ratio produced greater soot emissions.
Technical Paper

Development of a Valve Train Wear Test Procedure for Gasoline Engine Oil

An analysis was made of wear factors by investigating the effect of engine operating conditions on valve train wear. It was found that cam nose wear increased as larger amounts of combustion products, including nitrogen oxides and unburned gasoline, became intermixed with the engine oil. Based on these results, a valve train wear test procedure has been developed for evaluating cam nose and rocker arm wear under engine firing conditions. It has been confirmed that this test procedure correlates will with ASTM Sequence VE test and CCMC TU-3 test.
Technical Paper

Simultaneous Attainment of Low Fuel Consumption High Output Power and Low Exhaust Emissions in Direct Injection SI Engines

This paper describes simultaneous attainment in improving fuel consumption, output power and reducing HC emissions with a direct injection S.I. engine newly developed in Nissan. Straight intake port is adopted to increase discharge coefficient under WOT operation and horizontal swirl flow is generated by a swirl control valve to provide stable stratified charge combustion under part load conditions. As a result, fuel consumption is reduced by more than 20% and power output is improved by approximately 10%. Moreover, unburned HC is reduced by equivalently 30% in engine cold start condition. An application of diagnostic and numerical simulation tools to investigate and optimize various factors are also introduced.
Technical Paper

Engine-Out and Tail-Pipe Emission Reduction Technologies of V-6 LEVs

Compared with in-line 4-cylinder engines, V-6 engines show a slower rise in exhaust gas temperature, requiring a longer time for catalysts to become active, and they also emit higher levels of engine-out emissions. In this study, The combination of a new type of catalyst, and optimized ignition timing and air-fuel ratio control achieved quicker catalyst light-off. Additionally, engine-out emissions were substantially reduced by using a swirl control valve to strengthen in-cylinder gas flow, adopting electronically controlled exhaust gas recirculation (EGR), and reducing the crevice volume by decreasing the top land height of the pistons. A vehicle incorporating these emission reduction technologies reduced the emission level through the first phase of the Federal Test Procedure (FTP) by 60-70% compared with the Tier 1 vehicle.
Technical Paper

Development of a New Compound Fuel and Fluorescent Tracer Combination for Use with Laser Induced Fluorescence

Laser induced fluorescence (LIF) is a useful method for visualizing the distribution of the air-fuel ratio in the combustion chamber. The way this method is applied mainly depends on the fluorescent tracer used, such as biacetyl, toluene, various aldehydes, fluoranthene or diethylketone, among others. Gasoline strongly absorbs light in the UV region, for example, at the 248-nm wavelength of broadband KrF excimer laser radiation. Therefore, when using this type of laser, iso-octane is employed as the fuel because it is transparent to 248-nm UV light. However, since the distillation curves of iso-octane and gasoline are different, it can be expected that their vaporization characteristics in the intake port and cylinder would also be different. The aim of this study was to find a better fuel for use with LIF at a broadband wavelength of 248 nm. Three tasks were undertaken in this study.
Technical Paper

An Automatic Parameter Matching for Engine Fuel Injection Control

An automatic matching method for engine control parameters is described which can aid efficient development of new engine control systems. In a spark-ignition engine, fuel is fed to a cylinder in proportion to the air mass induced in the cylinder. Air flow meter characteristics and fuel injector characteristics govern fuel control. The control parameters in the electronic controller should be tuned to the physical characteristics of the air flow meter and the fuel injectors during driving. Conventional development of the engine control system requires a lot of experiments for control parameter matching. The new matching method utilizes the deviation of feedback coefficients for stoichiometric combustion. The feedback coefficient reflects errors in control parameters of the air flow meter and fuel injectors. The relationship between the feedback coefficients and control parameters has been derived to provide a way to tune control parameters to their physical characteristics.
Technical Paper

Establishment of a Method for Predicting Cam Follower Wear in the Material Development Process

Many studies have been reported concerning fundamental tribological research aimed at reducing the severe valve train wear that occurs in internal combustion engines. In this paper, cam follower wear was theoretically and experimentally analyzed at the material development stage. Statistical methods have been applied to practical use in determining the material properties quantitatively. Based on the results, a method for predicting cam follower wear has been derived which has made it possible to develop new valve train systems more efficiently. Further, a guideline for developing new wear resistant materials was also clarified. Finally, the precision high chrominum cast iron rocker arm is described, along with its application to a new NISSAN high-performance 4-cylinder DOHC engine, as an example of the use of this method to develop new wear-resistant materials.
Technical Paper

Improvement of Lambda Control Based on an Exhaust Emission Simulation Model that Takes into Account Fuel Transportation in the Intake Manifold

This paper presents an improved exhaust emission simulation model that takes into account fuel transportation behavior in order to obtain more precise air-fuel ratio control, which is needed to meet stringent exhaust emission standards. This simulation model is based on experimental formulas for air and fuel behavior in the intake manifold, especially during transient engine operation. Fuel behavior, including the effect of wall flow on the air-fuel ratio, is obtained analytically. Predictions are then made of the exhaust emissions from a car operated under official driving schedules. The new simulation model is a useful tool in the design and development of fuel supply control systems. An outline of the new model is presented first along with a comparison of the calculated and experimental results. The air-fuel ratio control strategy derived with this model is then described.
Technical Paper

An Analytical Study on Knocking Heat Release and its Control in a Spark Ignition Engine

In this study the relationship between the timing for the onset of autoignition and the amount of mixture fraction burned by autoignition and the resulting knock intensity is investigated using a combination of high-speed laser shadowgraphy and thermodynamic calculations. It is made clear that over 40 percent of the entire mixture burns due to autoignition in a crank angle of less than five to eight degrees when an engine is operated under a heavy knocking condition. This burn rate is about ten times higher than that of combustion seen in a normally propagating flame. This abrupt heat release causes an oscillation in cylinder gases, resulting in a knocking sound. The experimental procedure is applied to examine the effect of a squish combustion chamber on suppressing knock. The results indicate that, when autoignition occurs in the squish area, an amount of mixture burned by autoignition is small, resulting in lower knock intensity.
Technical Paper

Effect of Gasoline Composition on Engine Performance

In order to clarify the effect of each gasoline component on engine performance during warm-up, changes in the air-fuel ratio and quantity of wall flow (liquid gasoline on the induction port) were measured using ordinary gasolines and model gasolines consisting of a blend of several hydrocarbons and MTBE (methyl-tertiary-butyl-ether). The unburned air-fuel mixture in a combustion chamber was sampled via a solenoid valve and analyzed by gas chromatography to investigate the vaporization rate of each component. The results show that MTBE has an important effect on driveability because it contains oxygen and easily vaporizes, resulting in a lean mixture in the transient state. The popular driveability index, T50 (50% distillation temperature), does not provide an adequate means of evaluating MTBE-blended gasoline.
Technical Paper

Potentiality of the Modification of Engine Combustion Rate for NOx Formation Control in the Premixed SI Engine

In order to study the potentiality of the modification of the combustion rate for NOx formation control in the spark ignition (SI) engine, the authors first developed a new mathematical model by assuming the stepped gas temperature gradient in the cylinder. The predicted results from this new mathematical model show good coincidence with the experimental data. Second, the authors discuss the effects of the modification of the combustion rate on NOx formation using the new mathematical model. It was concluded that NOx formation in the premixed SI engine would be essentially determined by the specific fuel consumption only, regardless of any modification of the engine combustion rate.
Technical Paper

Development of the Nissan Electronically Controlled Carburetor System

An electronically controlled closed-loop carburetor system has been developed. This system's air-fuel ratio control is characterized by the air bleeds being controlled by turning the solenoid valves on and off at a constant frequency. The frequency above 30 Hz was desirable for practical performances. Some improvements and developments were made to the carburetor, the solenoid valve and the control unit. In application of this system to a three-way catalytic system with O2 sensor, the emissions met the 1978 Japanese standards.
Technical Paper

A Portable Fast Response Air-Fuel Ratio Meter Using an Extended Range Oxygen Sensor

The method for measuring air-fuel ratio is generally based on analysis of the exhaust gas components and its calculations. A new instrument has been developed which uses this method, but it attaches an oxygen sensor for exhaust gas analysis to the exhaust pipe and calculates the air-fuel ratio directly from the sensor output using a microprocessor. The response time of this instrument is 100 milliseconds and because it does not require an exhaust gas sampling system its weight is only 2.5 kg. This paper describes the operation theory, construction and characteristics of this instrument, as well as the results of air-fuel ratio of measurements on engines and vehicles using this instrument in a transient state.