Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Reciprocal Measurements of the Vehicle Transfer Function for Road Noise

Road Noise is generated by the change of random displacement input inside the tire contact patch. Since the existing 3 or 6 directional electromagnetic shakers have a flat surface at the tire contact patch, these shakers cannot excite the vehicle in a manner representative of actual on-road road noise input. Therefore, this paper proposes a new experimental method to measure the road noise vehicle transfer function. This method is based on the reciprocity between the tire contact patch and the driver's ear location. The reaction force sensor of the tire contact patch is newly developed for the reciprocal loud speaker excitation at the passenger ear location. In addition, with this equipment, it is possible to extract the dominant structural mode shapes creating high sound pressure in the automotive interior acoustic field. This method is referred to as experimental structure mode participation to the noise of the acoustic field in the vibro-acoustic coupling analysis.
Technical Paper

Analysis of Bumper Paint Removal and Development of Paint Removal Equipment

This paper deals with the development of plastics recycling technology, which is one key to resolving environmental and natural resource problems and encouraging recycling activities. Bumpers are among the heaviest plastic auto parts, so the technology for recycling bumpers is strongly required. Paint remaining on bumpers causes the strength of the recycled material to decline and degrades its surface quality. Therefore, unless the paint is removed, it is impossible to use recycled material to manufacture new bumpers. This hampers recycling efforts and results in low-value recycled material. Consequently, it is essential to develop a simple paint removing without chemical substances for practical plastics recycling at low cost. Two topics are discussed in this paper. The first concerns the mechanism of paint removal and the development of a technique for utilizing that mechanism.
Technical Paper

Application of CAE Technology to the Development of Plastic Automotive Components

The use of CAE software in developing plastic components has advanced rapidly in recent years. This progress has been supported by the development of practical analytical tools, based on the finite element and boundary element methods, and on the dramatic improvements seen in computer performance. Following the introduction of a flow analysis program in 1982, Nissan has developed and implemented advanced programs for use in developing plastic components and has integrated the programs into a unified in-house system. This system is being utilized at the design and manufacturing stages of interior and exterior trim parts and has produced concrete results in different phases of component development. Work is now proceeding on the development of a system that can simultaneously analyze both the component performance and the factors that need to be considered in the manufacturing process.