Refine Your Search



Search Results

Technical Paper

Nissan's New Multivalve DI Diesel Engine Series

This paper presents Nissan's new four-valve-per-cylinder direct injection (DI) diesel engine series consisting of a 2-liter class and 3-liter class. These engine series provide substantially improved power output along with lower noise and vibration levels, which have been traditional drawbacks of DI diesel engines. Nissan developed this engine series in response to the heightened need in recent years for passenger-car DI diesel engines with superior thermal efficiency, a characteristic advantageous for reducing CO2 emissions.
Technical Paper

Estimation of the Maximum Load Applied to Automotive Carburized Gears Using an Acoustic Emission Technique

A study was made of the possibility of using an acoustic emission (AE) technique to estimate the maximum load applied to automotive carburized gears under actual operating conditions. Three-point bending tests done on carburized steel specimens showed that, provided a small crack was induced in the material, AE was not generated until the material was subjected to a higher bending load than the maximum load previously applied. Using this effect, the maximum load applied to gears, in which a crack had been induced during endurance testing, was estimated. Although the estimated maximum load was about 14% higher than the actual load, the AE technique appears to be a promising method for use in the design and durability assurance of carburized parts of automotive powertrains.
Technical Paper

Application of Predictive Noise and Vibration Analysis to the Development of a New-Generation Lightweight 3-Liter V6 Nissan Engine

The target performance of a new engine has to be obtained under various restrictions such as cost and weihgt. It is particularly important to predict the engine noise and vibration performance at an early stage. For this purpose the analytical methods have been developed, which include the prediction of the absolute noise and vibration level by inputting a given exciting force into the model. These methods were applied to the development of the new engine. As a result, the characteristics of an aluminum cylinder block were used effectively to achieve a new lightweight V6 engine with low noise and vibration levels.
Technical Paper

Research on Crankshaft System Behavior Based on Coupled Crankshaft-Block Analysis

Achieving a multi-cylinder engine with excellent noise/vibration character sties and low friction at the main bearings requires an optimal design not only for the crankshaft construction but also for the bearing support system of the cylinder block. To accomplish that, it is necessary to understand crankshaft system behavior and the bearing load distribution for each of the main bearings. Crankshaft system behavior has traditionally been evaluated experimentally because of the difficulty in performing calculations to predict resonance behavior over the entire engine speed range. A coupled crankshaft-block analysis method has been developed to calculate crankshaft system behavior by treating vibration and lubrication in a systematic manner. This method has the feature that the coupled behavior of the crankshaft and the cylinder block is analyzed by means of main bearing lubrication calculations. This paper presents the results obtained with this method.
Technical Paper

Development of a Practical DSP Car Audio System

Digital signal processors (DSPs) are being used widely for sound field reproduction. However, it is difficult to apply a DSP to a car audio system because of the complicated acoustic characteristics of the passenger compartment. The authors have developed a new car audio system which employs special DSP software and a new speaker layout to provide excellent presence. The DSP has five output channels to generate stereophonic reflection from the front and rear speakers. The DSP software is programmed for each individual car model. A center speaker and A-pillar tweeters are used to produce a natural sound field in front through effective utilization of reflection from the windshield. This system is featured in 1992 Nissan models.
Technical Paper

Improvement of Engine Sound Quality Through a New Flywheel System Flexiby Mounted to the Crankshaft

Engines that not only produce less noise but also provide good sound quality have been in increasing demand recently. Discomforting noise can sometimes be heard, however, during acceleration as the engine reaches higher levels of power and speed. This paper presents the results of a study into the bending vibration of the crankshaft-flywheel system, which clarify the mechanism producing discomforting noise during acceleration. Based on that study, a flexible flywheel has been developed which effectively reduces crankshaft bending vibration that is closely related to the frequency range of the discomforting noise. As a result, acceleration sound quality is greatly improved.
Technical Paper

Reduction in Exhaust Noise Through Exhaust Valving Modifications Achieved with a Gas Dynamics Simulation Model

One of advanced requirements in current high output power engine design, as is seen in a four valve engine, is to reduce the exhaust noise without a reduction in engine performance. In order to examine the relationship between output and exhaust noise level, a gas dynamics simulation model was extended so as to predict the exhaust generated noise. The gas dynamics model used in this study is developed based on a finite difference method in which unsteady compressible flow is solved by two-step Lax-Wendroff method. Using this simulation model, timing changes were found to be effective in reducing the exhaust noise level without showing any trade-off on engine performance. These results were validated by the experiment.
Technical Paper

Development of a New-Generation High-Performance 4.5-liter V8 Nissan Engine

This paper describes a new 4.5-liter V8 engine, VH45DE, which was developed for use in the INFINITI Q45 sporty luxury sedan that was released in the U.S. and Japanese markets in November 1989. The many V8 engines in use around the world can be broadly devided into two categories. One category is characterized by ample torque at low engine speed and relatively large engine displacement. The other category is characterized by enhanced performance at relatively high engine speeds. The VH45DE engine is a new-generation V8 powerplant that delivers smooth power output at top-end speed and also generates ample torque at low engine speed to maintain good idle stability, and accomplishes it all with the smallest possible displacement. Development efforts were focused on two main goals. The first was to achieve efficient intake air charging. This has been accomplished the intake air resonant point at a relatively high engine speed through appropriate intake branch and collector tuning.
Technical Paper

The Application of Image Processing to Laser Displacement and Strain Analysis

New image processing procedures for speckle photography and holographic interferometry are described. The algorithm for speckle photography measures the displacement value and direction automatically within the accuracy of ±5% over a range of 10 µm to 150 µm. This algorithm has adopted the Maximum Entropy Method to measure fringe intervals with high accuracy. The algorithm for holographic interferometry detects the fringe line and determines the displacement distribution with an operator's assist. Through the experiments, it was shown that these procedures are effective and accurate for vibration and deformation analysis.
Technical Paper

Study of the Generation mechanism for Abnormal Exhaust Noise

Based on experimental analysis, the generation mechanism of abnormal exhaust noise which is characterized by an intermittent high frequency aetallic sound, is clarified by bench testing of a FWD vehicle. The noise is caused by large amplitude pressure waves (finite amplitude waves) in the exhaust pipe. They are amplified due to interference between reflected waves and subsequent waves from the engine, and are finally transformed into shock waves in the propagation process along the exhaust pipe, resulting in abnormal exhaust noise. By theoretical analysis of finite amplitude waves, the wave profile in the propagation process and the transition distance to the shock wave can be solved analytically where the assumptions of mass, momentum, and energy conservation are valid, until the moment of shock wave formation. The transition distance is a key parameter in analyzing the growth and existence of shock waves.
Technical Paper

A Fundamental Study on External Engine Noise Propagation from Light Vehicles

In this paper, we have analyzed the problem of the engine noise propagation and have classified that there is a fundamental relationship between exterior noise and structural design. In the case of light vehicles, we have isolated the following 2 factors in structural design which have a direct bearing on exterior noise. (1) The layout and the area of exposed openings in the engine room. (2) The ability of the engine room to absorb noise. In conclusion we suggest comprehensive approach to the problem of automotive noise reduction.
Technical Paper

The Concept of Suspension and Steering System for the New Datsun 280ZX

The DATSUN 28OZ has been widely known as a world-wide sports car. The NEW DATSUN 28OZX, as the succeeding model to 28OZ, has now appeared after being refined on both interior and exterior design. The Suspension and steering system of the new model are improved to get better handling performance and lower noise level. In this paper, the design concepts and techniques of the new suspension and steering system are described. The main themes are as follows the construction of new suspension and steering system handling performance directional stability vibration and noise level
Technical Paper

Development of an Engine Mount Optimization Method Using Modal Parameters

The purpose of this study was to develop a simple optimization method for use in designing vibration insulators. With this method, stiffness, location and inclination of each insulator are used as design parameters. A performance index consisting of vehicle modal parameters expressed as eigenvalues and eigenvectors has been constructed to evaluate low-frequency idle/shake performance and higher frequency vibration performance involving road/engine inputs. Using this performance index and the sensitivity of the modal parameters, a designer can easily find a suitable direction for optimizing mount performance and thereby obtain a stable solution. The new method was employed to optimize an engine mount system. Experimental data obtained on the system validated the accuracy of the calculated results and showed an improvement in idle/shake performance. This method is a useful tool in designing optimum vibration insulators.
Technical Paper

Effects of Power Plant Vibration on Sound Quality in the Passenger Compartment During Acceleration

The relationship between the spectrum structures of passenger compartment noise and the results of subjective evaluations of sound quality-has been studied on a fron-wheel-drive car with a four cylinder engine. As a result of an analysis using a car interior noise simulator, which is a kind of digital sound shynthesizer, most of the sound quality indicies such as the crank rumble noise, the roughness or unstable characteristics, and the muddiness were found to be related to the structure of engine revolution harmonics and to the strength of fourmants. Further, the physical mechanisms which characterize these spectrum structures were identified through both engine running tests and shaker tests. As a results, the dominant factors governing sound quality problems were found to be the crankshaft bending or torsional vibration coupled with the total power plant vibration shystem.
Technical Paper

Analysis of Disc Brake Squeal, 1992

Eliminating squeal noise generated during braking is an important task for the improvement of vehicle passengers' comfort. Considerable amount of research and development works have been done on the problem to date. In this study, we focused on the analyses of friction self-excited vibration and brake part resonance during high frequency brake squeal. Friction self-excited vibration is caused by the dry friction between pads and rotor, and occurs as a function of their relative sliding velocities. Its vibration frequency can be calculated in relation to the mass and stiffness of the pad sliding surface. Frequency responses of the brake assembly were measured and the vibration modes of the pad, disc and caliper during squeal were identified through modal analysis. Further study led to the development of a computer simulation method for analyzing the vibration modes of brake parts. Analytical results obtained using the method agreed well with the corresponding experimental data.
Technical Paper

The Development of an Active Noise Control System for Automobiles

This Paper Presents the world's first active noise system for production vehicle implementation. Adopted in the new middle size FF car model, this epoch-making system dramatically reduces the booming noise caused by the second-order harmonic of engine revolution. This is accomplished by using an adaptive control theory based on digital signal processing technology and a digital signal processor (DSP). The system basically employs a multiple error filtered-x LMS algorithm, to which an new algorithm was added to achieve the maximum noise reduction effect under a condition of stable control in a compact system for production vehicle application.
Technical Paper

Reduction of Powerplant Vibration Level in the Acceleration Noise Region Based on Analysis of Crankshaft System Behavior

Increased attention has been directed toward noise and vibration characteristics of vehicles in recent years and the performance requirements in this area continue to become more rigorous every year. The acceleration noise in a frequency range of 250 ∼ 800Hz caused by powerplant vibration is important, and there is a need to reduce this noise level. In addition to reducing noise and vibration, however, there is also a growing need to achieve further weight reductions. Consequently, it is essential to reduce the weight of a powerplant without increasing its vibration levels. This make it necessary to predict powerplant vibration characteristics accurately at the planning and design stage so that suitable specifications can be determined. Specifications for reducing powerplant vibration have traditionally been found by experimentation. However, in powerplant excitation tests it has not been possible to take into consideration the effect of the crankshaft system on powerplant vibration.
Technical Paper

Development of an Experimental Modal Synthesis Method for Coupled Acoustic-Structural Systems

This paper describes an experimental modal synthesis method for determining the noise characteristics of coupled acoustic-structural systems. This method was developed to provide an essential tool for analyzing passenger compartment noise levels. With this method, it is possible to obtain the coupled acoustic-structural parameters directly from experimental measurements of noise and vibration. The resulting modal parameters provide the basis for predicting how structural modifications will affect interior noise characteristics. This paper presents the theory on which the method is based and gives examples of its application to passenger compartment noise analyses.
Technical Paper

Reduction of Vehicle Interior Noise Using Structural-Acoustic Sensitivity Analysis Methods

Since interior noise has a strong effect on vehicle salability, it is particularly important to be able to estimate noise levels accurately by means of simulation at the design stage. The use of sensitivity analysis makes it easy to determine how the analytical model should be modified or the structure optimized for the purpose of reducting vibration and noise of the structural-acoustic systems. The present work focused on a structural-acoustic coupling problem. As the coefficient matrices of a coupled structural-acoustic system are not symmetrical, the conventional orthogonality conditions obtained in structural dynamics generally do not hold true for the coupled system. To overcome this problem, the orthogonality and normalization conditions of a coupled system were derived by us. In this paper, our sensitivity analysis methods are applied to an interior noise problem of a cabin model.
Technical Paper

A Unique Dual-Mode Muffler

The techniques harmonizing the contradiction which consists of exhaust noise reduction and engine power increase, have been required for the exhaust muffler. This techniques rapidly improved by means of the clarification due to the acoustic theories and the flow analyses. Recently, according to the passenger car tendency toward high grade and high performance, demands for low noise and high power exhaust systems are increasing year by year. The “Dual Mode Muffler” system (abbreviated, below, DMM) mounted on Nissan Cedric, Grolia and Cima series, installed in 1987, is achieved the consistent of the quietness and the engine power performance. This system is the first control type exhaust system for the 4 wheel car. On previous paper, the analyses of acoustic characteristics on DMM were mainly shown. The analyses of exhaust pressure characteristics are also an important theory along with the acoustic in the development of the exhaust system.