Refine Your Search

Topic

Search Results

Technical Paper

Nissan's New Multivalve DI Diesel Engine Series

1998-02-23
981039
This paper presents Nissan's new four-valve-per-cylinder direct injection (DI) diesel engine series consisting of a 2-liter class and 3-liter class. These engine series provide substantially improved power output along with lower noise and vibration levels, which have been traditional drawbacks of DI diesel engines. Nissan developed this engine series in response to the heightened need in recent years for passenger-car DI diesel engines with superior thermal efficiency, a characteristic advantageous for reducing CO2 emissions.
Technical Paper

Application of Predictive Noise and Vibration Analysis to the Development of a New-Generation Lightweight 3-Liter V6 Nissan Engine

1994-03-01
940993
The target performance of a new engine has to be obtained under various restrictions such as cost and weihgt. It is particularly important to predict the engine noise and vibration performance at an early stage. For this purpose the analytical methods have been developed, which include the prediction of the absolute noise and vibration level by inputting a given exciting force into the model. These methods were applied to the development of the new engine. As a result, the characteristics of an aluminum cylinder block were used effectively to achieve a new lightweight V6 engine with low noise and vibration levels.
Technical Paper

Research on Crankshaft System Behavior Based on Coupled Crankshaft-Block Analysis

1997-10-01
972922
Achieving a multi-cylinder engine with excellent noise/vibration character sties and low friction at the main bearings requires an optimal design not only for the crankshaft construction but also for the bearing support system of the cylinder block. To accomplish that, it is necessary to understand crankshaft system behavior and the bearing load distribution for each of the main bearings. Crankshaft system behavior has traditionally been evaluated experimentally because of the difficulty in performing calculations to predict resonance behavior over the entire engine speed range. A coupled crankshaft-block analysis method has been developed to calculate crankshaft system behavior by treating vibration and lubrication in a systematic manner. This method has the feature that the coupled behavior of the crankshaft and the cylinder block is analyzed by means of main bearing lubrication calculations. This paper presents the results obtained with this method.
Technical Paper

Improvement of Engine Sound Quality Through a New Flywheel System Flexiby Mounted to the Crankshaft

1990-02-01
900391
Engines that not only produce less noise but also provide good sound quality have been in increasing demand recently. Discomforting noise can sometimes be heard, however, during acceleration as the engine reaches higher levels of power and speed. This paper presents the results of a study into the bending vibration of the crankshaft-flywheel system, which clarify the mechanism producing discomforting noise during acceleration. Based on that study, a flexible flywheel has been developed which effectively reduces crankshaft bending vibration that is closely related to the frequency range of the discomforting noise. As a result, acceleration sound quality is greatly improved.
Technical Paper

The Application of Image Processing to Laser Displacement and Strain Analysis

1987-10-01
871947
New image processing procedures for speckle photography and holographic interferometry are described. The algorithm for speckle photography measures the displacement value and direction automatically within the accuracy of ±5% over a range of 10 µm to 150 µm. This algorithm has adopted the Maximum Entropy Method to measure fringe intervals with high accuracy. The algorithm for holographic interferometry detects the fringe line and determines the displacement distribution with an operator's assist. Through the experiments, it was shown that these procedures are effective and accurate for vibration and deformation analysis.
Technical Paper

The Concept of Suspension and Steering System for the New Datsun 280ZX

1979-02-01
790737
The DATSUN 28OZ has been widely known as a world-wide sports car. The NEW DATSUN 28OZX, as the succeeding model to 28OZ, has now appeared after being refined on both interior and exterior design. The Suspension and steering system of the new model are improved to get better handling performance and lower noise level. In this paper, the design concepts and techniques of the new suspension and steering system are described. The main themes are as follows the construction of new suspension and steering system handling performance directional stability vibration and noise level
Technical Paper

Development of an Engine Mount Optimization Method Using Modal Parameters

1993-10-01
932898
The purpose of this study was to develop a simple optimization method for use in designing vibration insulators. With this method, stiffness, location and inclination of each insulator are used as design parameters. A performance index consisting of vehicle modal parameters expressed as eigenvalues and eigenvectors has been constructed to evaluate low-frequency idle/shake performance and higher frequency vibration performance involving road/engine inputs. Using this performance index and the sensitivity of the modal parameters, a designer can easily find a suitable direction for optimizing mount performance and thereby obtain a stable solution. The new method was employed to optimize an engine mount system. Experimental data obtained on the system validated the accuracy of the calculated results and showed an improvement in idle/shake performance. This method is a useful tool in designing optimum vibration insulators.
Technical Paper

Effects of Power Plant Vibration on Sound Quality in the Passenger Compartment During Acceleration

1987-04-28
870955
The relationship between the spectrum structures of passenger compartment noise and the results of subjective evaluations of sound quality-has been studied on a fron-wheel-drive car with a four cylinder engine. As a result of an analysis using a car interior noise simulator, which is a kind of digital sound shynthesizer, most of the sound quality indicies such as the crank rumble noise, the roughness or unstable characteristics, and the muddiness were found to be related to the structure of engine revolution harmonics and to the strength of fourmants. Further, the physical mechanisms which characterize these spectrum structures were identified through both engine running tests and shaker tests. As a results, the dominant factors governing sound quality problems were found to be the crankshaft bending or torsional vibration coupled with the total power plant vibration shystem.
Technical Paper

Analysis of Disc Brake Squeal, 1992

1992-02-01
920553
Eliminating squeal noise generated during braking is an important task for the improvement of vehicle passengers' comfort. Considerable amount of research and development works have been done on the problem to date. In this study, we focused on the analyses of friction self-excited vibration and brake part resonance during high frequency brake squeal. Friction self-excited vibration is caused by the dry friction between pads and rotor, and occurs as a function of their relative sliding velocities. Its vibration frequency can be calculated in relation to the mass and stiffness of the pad sliding surface. Frequency responses of the brake assembly were measured and the vibration modes of the pad, disc and caliper during squeal were identified through modal analysis. Further study led to the development of a computer simulation method for analyzing the vibration modes of brake parts. Analytical results obtained using the method agreed well with the corresponding experimental data.
Technical Paper

Reduction of Powerplant Vibration Level in the Acceleration Noise Region Based on Analysis of Crankshaft System Behavior

1992-09-01
922087
Increased attention has been directed toward noise and vibration characteristics of vehicles in recent years and the performance requirements in this area continue to become more rigorous every year. The acceleration noise in a frequency range of 250 ∼ 800Hz caused by powerplant vibration is important, and there is a need to reduce this noise level. In addition to reducing noise and vibration, however, there is also a growing need to achieve further weight reductions. Consequently, it is essential to reduce the weight of a powerplant without increasing its vibration levels. This make it necessary to predict powerplant vibration characteristics accurately at the planning and design stage so that suitable specifications can be determined. Specifications for reducing powerplant vibration have traditionally been found by experimentation. However, in powerplant excitation tests it has not been possible to take into consideration the effect of the crankshaft system on powerplant vibration.
Technical Paper

Development of an Experimental Modal Synthesis Method for Coupled Acoustic-Structural Systems

1992-09-01
922089
This paper describes an experimental modal synthesis method for determining the noise characteristics of coupled acoustic-structural systems. This method was developed to provide an essential tool for analyzing passenger compartment noise levels. With this method, it is possible to obtain the coupled acoustic-structural parameters directly from experimental measurements of noise and vibration. The resulting modal parameters provide the basis for predicting how structural modifications will affect interior noise characteristics. This paper presents the theory on which the method is based and gives examples of its application to passenger compartment noise analyses.
Technical Paper

Reduction of Vehicle Interior Noise Using Structural-Acoustic Sensitivity Analysis Methods

1991-02-01
910208
Since interior noise has a strong effect on vehicle salability, it is particularly important to be able to estimate noise levels accurately by means of simulation at the design stage. The use of sensitivity analysis makes it easy to determine how the analytical model should be modified or the structure optimized for the purpose of reducting vibration and noise of the structural-acoustic systems. The present work focused on a structural-acoustic coupling problem. As the coefficient matrices of a coupled structural-acoustic system are not symmetrical, the conventional orthogonality conditions obtained in structural dynamics generally do not hold true for the coupled system. To overcome this problem, the orthogonality and normalization conditions of a coupled system were derived by us. In this paper, our sensitivity analysis methods are applied to an interior noise problem of a cabin model.
Technical Paper

An Application of Structural-Acoustic Coupling Analysis to Boom Noise

1989-09-01
891996
Reduction of interior noise is an important factor in vehicle design and many experimental and theoretical studies have been carried out to find effective noise reduction techniques. Previously, we developed a Structural-Acoustic Uncoupled Program, ACOUST3, as a technique for estimating low-frequency noise in the vehicle interior. In the present work, ACOUST3 has been extended to construct an acoustic coupling analysis system, ASCA, which is used to calculate low-frequency noise, such as boom noise. In order to calculate low-frequency noise accurately, it is necessary to represent the vibration characteristics of the trimmed body as closely as possible. To do this, we built a trimmed body model, incorporating 22 trim parts, based on vibration test results, and found that the calculated results obtained with the model correlated well with experimental data.
Technical Paper

Analysis of Vibrational Modes of Vehicle Steering Mechanisms

1971-02-01
710627
An analysis was made of vibration phenomena in the steering system of a vehicle, when the front wheels have some amount of unbalance. The program included vehicle running tests and bench tests to ascertain some of the factors influencing vibration behavior. A mathematical model of the vibration system was simulated on a digital computer in as much detail as possible. The resultant understanding of the dynamics of the system as a whole led to an extensive theoretical analysis of selected key parameters.
Technical Paper

The Development of the Suspension System Used on the Nissan Stanza - A New Front-Wheel-Drive Compact Car

1983-06-06
830980
The suspension system of the Nissan Stanza was specifically designed for use on a front-wheel-drive car. It was developed with the idea that the new suspension should be compact and light, and afford a comfortable ride as well as good stability and controllability. Furthermore, it should have excellent noise and vibration characteristics. To achieve these objectives we adapted a strut suspension for both the front and rear, and careful consideration was given to the fundamental specifications. In addition, some new ideas were applied for the layout of the suspension.
Technical Paper

Optimum Application for Hydroelastic Engine Mount

1986-10-01
861412
The development of hydroelastic engine mounts has resulted in ride performance superior to that of conventional all-rubber mounts. Therefore, they have been widely applied to ears recently. However, their vibration transmission mechanism has yet to be thoroughly explained. By theoretical analysis of this mechanism, it is found that these mounts function as a “Velocity Amplifying Dynamic Damper”. It was also found that by making effective use of this function that the resonance of the mount can be tuned to an extremely low frequency range while still maintaining a compact structure. At the same time, the vibration damping effect can also be improved. Applying these results to an analysis of riding comfort, an optimum application method for hydroelastic engine mounts is obtained.
Technical Paper

Optimization Analysis for Vehicle Vibration mode Control

1986-04-22
860809
The occurrence of various vibrations and noises in an automobile, such as idling vibration, boom noise and road noise, is greatly affected by the natural vibration modes and could be developed for controlling the body strength and weight these problems could be solved and a high-performance vehicle realised. This paper presents an analytical method developed by the authors to solve these problems and gives examples of its application. In developing this method, the problems of natural vibration mode and static stiffness control were addressed. Perturbation and sensitivity analysis methods have already been proposed for mode control. Four typical methods were examined and the best one was chosen in terms of accuracy and calculation time when handling large-scale problems. For static sensitivity analysis, we proposed a nevi method which is like natural mode sensitivity analysis.
Technical Paper

Radiation Noise Due to Longitudinal Vibration of the Exhaust Pipe

1985-11-11
852266
The front exhaust pipe and the heat-shield plate of the catalytic converter are excited by the engine vibration. Noise radiation occurs on their surface. Concerning vehicle exterior noise, noise radiated from the exhaust system is often one of major sources as well as engine and exhaust noise. This paper describes the longitudinal vibration model-as a beam-is applied to the high frequency vibration that causes the noise radiated from the exhaust system. It describes also some methods of reducing such noise radiation by isolating the vibration from the front exhaust pipe. These methods are: adding mass to the front pipe, changing the material of the front pipe to a smaller Young's modulus one, installing flexible pipe composed by two sections, and so on.
Technical Paper

Analytical Study on Engine Vibration Transfer Characteristics Using Single-Shot Combustion

1981-02-01
810403
In order to demonstrate the generation mechanism of “combustion noise” separately from “mechanical noise,” the process of transfer in which vibration travels to each engine portion was analyzed through single-shot combustion of a propane-air mixture in the combustion chamber with the crankshaft fixed at a given angle. The effect of the natural frequency of each portion of the engine on the vibration transfer characteristics is discussed by introducing a vibration transfer function. The transfer paths of exciting forces which are caused by the combustion are quantitatively clarified.
Technical Paper

An Application of Structural-Acoustic Analysis to Car Body Structure

1985-05-15
850961
In order to calculate efficiently the characteristics of car body vibration and the acoustic characteristic of the passenger compartment, a structural-acoustic analysis system, ‘CAD-B’, was developed. This system divides the body into three components - front body, main cabin and rear body. The characteristics of front and rear body vibration are expressed in modal parameters. The vibration characteristic throughout the car body is then calculated through the building block approach, while the main cabin remains in finite elements. A good agreement in eigen pairs was seen between this approach and the conventional finite element method. As for the passenger compartment, it is divided into finite elements and its eigen pairs are calculated. Then by linking body vibration with the acoustic characteristic of the passenger compartment, sound pressure in the passenger compartment is calculated.
X