Refine Your Search

Topic

Author

Search Results

Technical Paper

Design of Lane-Keeping Control with Steering Torque Input for a Lane-Keeping Support System

2001-03-05
2001-01-0480
This paper describes the method used to design the basic control algorithm of a lane-keeping support system that is intended to assist the driver's steering action. Lane-keeping control has been designed with steering torque as the control input without providing a minor loop for the steering angle. This approach was taken in order to achieve an optimum balance of lane-keeping control, ease of steering intervention by the driver and robustness. The servo control system was designed on the basis of H2 control theory. Robustness against disturbances, vehicle nonlinearity and parameter variation was confirmed by μ - analysis. The results of computer simulations and driving tests have confirmed that the control system designed with this method provides the intended performance.
Technical Paper

Development of an Adaptive Cruise Control System with Stop-and-Go Capability

2001-03-05
2001-01-0798
An Adaptive Cruise Control system with stop-and-go capability has been developed to reduce the driver's workload in traffic jams on expressways. Based on an analysis of driving behavior characteristics in expressway traffic jams, a control system capable of modeling those characteristics accurately has been constructed to provide natural vehicle behavior in low-speed driving. The effectiveness of the system was evaluated with an experimental vehicle, and the results confirmed that it reduces the driver's workload. This paper presents an outline of the system and its effectiveness along with the experimental results.
Technical Paper

Intelligent Sensing System to Infer DriverS Intention

2000-11-01
2000-01-C056
An approach to designing an intelligent vehicle controller for partially supporting driver operation of a vehicle is proposed. Vehicle behavior is regarded as a system performed by the interaction between the driving environment, vehicle as a machine and driver expectations for the vehicle movements. Driver intention to accelerate or decelerate is mainly generated by the perception of the driving environment. The model we propose involves information on the driving environment affecting driver intention taking driver differences in perceiving the driving environment into account. An engineering model for installing the vehicle controller is expressed by a multipurpose decision-maker allowing explicit treatment of the driving environment, vehicle action, and driver intention. A reasoning engine deals with differences in individual driver traits for generating intention to decelerate by using fuzzy integrals and fuzzy measures.
Technical Paper

Development of a Method for Reducing the Driver's Work Load Using a Human Body Model Based on Biomechanisms

1996-02-01
960948
A human body model has been developed for conducting personal computer simulations to evaluate physical work loads, especially muscle loads, associated with the driving position and arm and leg motions. The validity of the model was confirmed by comparing estimated work loads with electromyographic measurements. Correlation analyses were conducted to examine the relationship between the estimated loads and subjective evaluations. The results indicated the regions of the body where loads had the largest impact on the perceived sensation of physical effort and were used to derive an index for evaluating the overall work load of the entire body. The simulation method was used to evaluate control switch positions, driving position and vehicle entry/exit motions.
Technical Paper

Development of a New 4WD System: All-Mode 4WD

1997-02-24
970684
This paper presents a new electronic torque split four-wheel-drive system called All-Mode 4WD, which has been adopted in the latest generation of sport-utility vehicles (SUVs). As a torque split system designed specifically for SUV use, it provides stable driving performance matching the driver's intentions under all sorts of operating conditions, from a completely natural on-road driving feel to powerful traction for off-road travel.
Technical Paper

Development of a Multi-Link Beam Rear Suspension for Front-Wheel-Drive Cars

1995-02-01
950585
Research into stability at high speed shows that rear suspension characteristics play an important role in vehicle control and stability. In order to improve the cornering limit steering performance and traction of front-wheel-drive vehicles, where the front wheels bear a large proportion of the load and transmit the driving force, and to maintain vehicle stability when decelerating while cornering, rear suspension characteristics are needed that will fully draw out the cornering force capacity of the rear tires. This requirement continues to grow every year, along with demands for higher levels of comfort in passenger cars, including improved ride quality and quietness. It was against this background that the new multi-link beam rear suspension, which is installed in the new Maxima and Sentra models, was developed. This paper describes the aims, construction, characteristics and effects of this new suspension, with focus on vehicle control and stability.
Technical Paper

Evaluation and Improvement of Vehicle Roll Behavior

1997-02-24
970093
Vehicle roll behavior has a large influence on how drivers evaluate handling performance. This paper describes an approach to quantifying roll behavior experimentally and presents a method for designing suspension properties to improve the sensation of roll. In this study, it was found that using pitch motion as an evaluation index results in good correspondence with subjective evaluations. To obtain acceptable roll behavior, it is important to control pitch motion during roll to a lower mode at the front end relative to the rear. This desirable behavior can be achieved by designing suitable roll center characteristics, nonlinear load changes and damping force coefficients.
Technical Paper

Development and Evaluation of a Car Navigation System Providing a Bird's-Eye View Map Display

1996-02-01
961007
A new map display technique has been developed for car navigation systems that presents a bird's-eye view of three-dimensional map images. This view allows both detailed and wide-area information to be presented simultaneously in a single screen display. It provides drivers with a reassuring feeling while driving along their route because the two types of information can guide them accurately to their destination. The results of evaluation tests have confirmed the effectiveness of this technique. On the other hand, some aspects requiring further improvement were also identified. This paper discusses how the technique was developed and describes the tests conducted to evaluate its effectiveness along with the results obtained.
Technical Paper

Factoring Nonlinear Kinematics into New Suspension Design: A CAE Approach to Vehicle Roll Dynamics

1994-03-01
940871
Over the past several decades, vehicle dynamics have been treated mainly on the basis of linear theories. An actual vehicle, however, also shows nonlinear properties such as roll behavior induced by movement of the roll axis. The purpose of this study was to investigate the vehicle roll dynamics in the nonlinear range. Suspensions were divided into two categories and computer-aided engineering (CAE) was used to conduct analyses of complicated kinematics. The results obtained provided theoretical support for designing the Multi-Link Beam Rear Suspension, a new type of suspension for front-wheel-drive cars.
Technical Paper

Development of the New Generation Ergonomic Seat Based on Occupant Posture Analysis

1995-02-01
950140
In this study, the functions required of automotive seats were analyzed from the standpoint of occupant posture. The results have been incorporated in the development of the New Generation Ergonomic Seat, which better fits the contours of the human body and prevents a stooped posture that places a greater load on the lumbar region, thereby reducing fatigue during long hours of driving. The new seat adopts the concept of “combined pelvic and lumbar support,” based on an analysis of the muscular and skeletal structure of the human body, sitting posture and body pressure distribution.
Technical Paper

Trends in Vehicle Information Displays in the Multimedia Era

1998-10-19
98C035
Flat panel displays for automobiles are facing a new era with the development of navigation systems. As navigation systems become more important as driver's assistance devices, development of birds-eye-view and 3D displays continues, as well as improvements for larger display screens and higher mounting positions. In response to the progress of mobile multimedia technologies, demands for larger display screens and larger aspect ratios have been increasing. Significance for improvements to anti-glare features or view angles has increased as they provide better visibility and the increase layout options. The use of human machine information interaction, which interfaces visual, audio and tactile senses, makes it possible to realize safer, more convenient and comfortable multimedia era vehicle
Technical Paper

Development of Side Impact Air Bag System for Head and Chest Protection

1998-05-31
986165
Most of the side impact air bag systems in the current market are designed to protect the thorax area only. The new Head and Thorax SRS Side Impact Air Bag system, which Nissan recently introduced into the market, was designed to help provide additional protection for the head in certain side impacts. The system may help protect occupant head contacts when the vehicle collides into a tree, or the high hood of a large striking vehicle. This paper introduces the additional features and function of the new Head and Thorax SRS Side Impact Air Bag system, and some evaluation results in laboratory testing.
Technical Paper

Interactive Information Delivery Navigation System

1998-10-19
98C029
In the past few years, car navigation and cellular phone system are rapidly increased in Japan and vehicle information and communication system (VICS), the public traffic information service started in 1996, accelerates realization of ITS world. This rapid movement causes drivers to want more information on not only traffic jam but also other versatile items like parking availability, weather report and the latest news, etc. via cellular phone network. This paper describes the on-demand information service with the interactive human interface by operators and the development of the information center and the in-vehicle system to realize it.
Technical Paper

Development of Practical Heads-Up Display for Production Vehicle Application

1989-02-01
890559
THIS PAPER presents an advanced heads-up display which has been newly developed for use in 88 Nissan Silvia model. The HUD consists of a projector with a newly developed high brightness VFD and light-selective film used as a combiner which is coated on the windshield. This combination provides good display legibility even under bright sunlight. The display shows the vehicle speed in a three-digit reading at distance of more than one meter from the driver's eyes. The windshield-coated combiner conforms to U.S. safety standards concerning light transmittance, abrasion and other performance requirements. Experimental data are also presented which substantiate the HUD's high legibility and confirm its effect in enhancing the driver's attention toward the road ahead
Technical Paper

Development of Electronically Controlled Air Suspension System

1988-11-01
881770
This paper discusses the key components of a new electronically controlled air suspension system developed by Nissan Motor Co. The system utilizes a very soft spring rate, and effectively controls the spring rate and the damping coefficient to achieve high suspension performance. As a result, this system improves both riding comfort and vehicle controllability, two factors that normally conflict with each other. The soft spring rate delivers a comfortable ride, and accurate controllability prevents the vehicle's attitude from changing significantly during roiling, braking and accelerating.
Technical Paper

Development of a Method for Predicting Comfortable Airflow in the Passenger Compartment

1992-09-01
922131
Indexes of thermal comfort, such as PMV (Predicted Mean Vote: ISO-7730), which have traditionally been applied to houses or buildings, are difficult to be applied to the automotive passenger compartment because of the large thermal differences that exist around vehicle occupants. In this work, the effects of temperature, airflow and solar radiation on passenger comfort in an air-conditioned vehicle interior were analyzed. Based on the results obtained, a method was devised for predicting the feeling of comfort passengers get from the thermal atmosphere in the vehicle interior. This paper explains the necessity of providing a diffused airflow in an air-conditioned passenger compartment, based on the effects of airflow on the feeling of comfort. Further, a new airflow control procedure is proposed which combines both diffused and concentrated airflow patterns to create a new variable airflow system.
Technical Paper

Research and Development Work on Navigation Systems at Nissan

1993-11-01
931921
Nissan is offering navigation systems in some domestic production models. These systems, which show drivers the vehicle's present location on a CRT map display, free them from anxiety about getting lost when traveling in an unfamiliar area. It is expected that future navigation systems will incorporate two key capabilities. One will be a route guidance capability, which will not only indicate the present location but also select the optimal route to the intended destination and guide drivers there by indicating which direction to take at each intersection along the way. The second capability will be a communications link with the roadside infrastructure for receiving outside information such as traffic congestion data and incorporating that information into route guidance. Nissan has established the core technologies of these navigation capabilities in the past ten years through the development of conceptual prototypes and experimental systems in government-sponsored projects.
Technical Paper

A Portable Fast Response Air-Fuel Ratio Meter Using an Extended Range Oxygen Sensor

1988-02-01
880559
The method for measuring air-fuel ratio is generally based on analysis of the exhaust gas components and its calculations. A new instrument has been developed which uses this method, but it attaches an oxygen sensor for exhaust gas analysis to the exhaust pipe and calculates the air-fuel ratio directly from the sensor output using a microprocessor. The response time of this instrument is 100 milliseconds and because it does not require an exhaust gas sampling system its weight is only 2.5 kg. This paper describes the operation theory, construction and characteristics of this instrument, as well as the results of air-fuel ratio of measurements on engines and vehicles using this instrument in a transient state.
Technical Paper

Study of Comfortable Sitting Posture

1988-02-01
880054
By nature, the driver's seat should be designed for work, while the passenger's seat should be built for comfort. This means that the functions of the seats are inherently different. Although many studies have been done on the driver's seat, the design and use of the passenger's seat have received little attention. This study examined a comfortable sitting posture in the passenger's seat. The results obtained have led to the development of two new devices. One device makes it possible for the seat cushion to move upward and forward as the seat tilts backward. The other device allows the upper portion of the seat back to tilt forward from the top of the lower seat back. These devices thus function to provide a comfortable sitting posture. This paper describes the new devices and presents the results of an investigation into a comfortable sitting posture for the occupant of the front passenger's seat.
Technical Paper

Technological Trends in Automotive Electronics

1987-11-08
871285
Although automotive electronics was initially applied as a substitute for mechanical parts, this technology has the potential to achieve effective combinations of mechanical functions. A case in point is the successful resolution of fuel consumption and exhaust emission problems by effectively integrating engine control and catalyst technologies. LSI technology has also been incorporated into automotive electronics and established as a fundamental engine control tool. Thanks to LSI technology, particularly the use of microprocessor techniques, conventional machine design problems have been transformed into logical design ones. In the next stage of application, automotive electronics is expected to provide further benefits including a more comfortable ride, an improved human-machine system interface, and an advanced communications system between vehicles and other telecommunications stations.
X