Refine Your Search

Topic

Author

Search Results

Technical Paper

Aerodynamic Sensitivity Analysis of Tire Shape Factors

2020-04-14
2020-01-0669
It is well known that the wheels and tires account for approximately 25% of the overall aerodynamic drag of a vehicle. This is because the contribution of the tires to aerodynamic drag stems from not only aerodynamic drag itself directly caused by exposure to the main flow (tire CD), but also from aerodynamic drag indirectly caused by the interference between tire wakes and the upper body flow (body CD). In the literature, as far as the authors are aware, there have been no reports that have included the following all four aspects at once: (1) CD sensitivity to detailed tire shape factors; (2) CD sensitivity differences due to different vehicle body types; (3) CD sensitivity for each aerodynamic drag component, i.e., tire CD and body CD; (4) Flow structure and mechanism contributing to each aerodynamic drag component. The purpose of this study was to clarify CD sensitivity to tire shape factors for tire CD and body CD considering two different vehicle body types, sedan and SUV.
Technical Paper

Development of a Prediction Method for Passenger Vehicle Aerodynamic Lift using CFD

2008-04-14
2008-01-0801
Increasing expectations for stability at high speed call for the improvement of cars' aerodynamic performance, in particular lift reduction. However, due to styling constraints, traditional spoilers must be avoided and replaced by other solutions like underfloor components. Flow simulation is expected to be a useful tool for lift prediction, but the conventional models used so far did not represent complex geometry details such as the engine compartment and underfloor, and accuracy was insufficient. In the present study, a full vehicle simulation model, including the engine compartment and underfloor details, was used. Other improvements were also made such as optimization of the computational grid and the setting of boundary conditions for reproducing wind tunnel experiments or actual driving, making it possible to predict lift variations due to vehicle geometry changes.
Technical Paper

Engine Application of a Battery Voltage-Driven DI Fuel Injection System

2001-03-05
2001-01-0986
Every fuel injection system for DI gasoline engines has a DC-DC converter to provide high, stabile voltage for opening the injector valve more quickly. A current control circuit for holding the valve open is also needed, as well as a large-capacity capacitor for pilot injection. Since these components occupy considerable space, an injector drive unit separate from the ECU must be used. Thus, there has been a need for a fuel injection system that can inject a small volume of fuel without requiring high voltage. To meet that need, we have developed a dual coil injector and an opening coil current control system. An investigation was also made of all the factors related to the dynamic range of the injector, including static flow rate, fuel pressure, battery voltage and harness resistance. Both efforts have led to the adoption of a battery voltage-driven fuel injector.
Technical Paper

Development of Pitting Resistant Steel for Transmission Gears

2001-03-05
2001-01-0827
It was found that pitting resistance of gears is strongly influenced by resistance to temper softening of carburized steel. The investigation about the influence of chemical compositions on hardness after tempering revealed that silicon, chromium and molybdenum are effective elements to improve resistance to temper softening and pitting resistance. Considering the production of gears, molybdenum is unfavorable because it increases hardness of normalized or annealed condition. Developed new steel contains about 0.5 mass% of silicon and 2.7 mass% chromium. The new steel has excellent pitting resistance and wear resistance. Fatigue and impact strength are equivalent to conventional carburized steels. Cold-formability and machinability of the new steel are adequate for manufacturing gears because of its ordinary hardness before carburizing. The new steel has already been put to practical use in automatic transmission gears. Application test results are also reported.
Technical Paper

Development of a Practical DSP Car Audio System

1992-02-01
920081
Digital signal processors (DSPs) are being used widely for sound field reproduction. However, it is difficult to apply a DSP to a car audio system because of the complicated acoustic characteristics of the passenger compartment. The authors have developed a new car audio system which employs special DSP software and a new speaker layout to provide excellent presence. The DSP has five output channels to generate stereophonic reflection from the front and rear speakers. The DSP software is programmed for each individual car model. A center speaker and A-pillar tweeters are used to produce a natural sound field in front through effective utilization of reflection from the windshield. This system is featured in 1992 Nissan models.
Technical Paper

Development of an Electric Concept Vehicle with a Super Quick Charging System

1992-02-01
920442
Recent environmental concerns such as atmospheric pollution and energy conservation have intensified the need to develop pollution-free, energy-efficient vehicles. One such solution is the electric automobile which draws its power from rechargeable batteries. There are few vehicles on the road today because present batteries can store very little energy compared with that of a tank of gasoline. To obtain adequate range, this concept vehicle adopts a new battery which can be recharged to 40% of capacity in six minutes. This super quick charging system makes it possible to recharge the batteries at an electric recharging station just as gasoline-powered vehicles are refilled at service stations. The electric concept vehicle also has improved aerodynamics, reduced rolling resistance and a lighter curb weight, which help to assure adequate range.
Technical Paper

A Study of Drag Reduction Devices for Production Pick-up Trucks

2017-03-28
2017-01-1531
This paper describes a study of drag reduction devices for production pick-up trucks with a body-on-frame structure using full-scale wind tunnel testing and Computational Fluid Dynamics (CFD) simulations. First, the flow structure around a pick-up truck was investigated and studied, focusing in particular on the flow structure between the cabin and tailgate. It was found that the flow structure around the tailgate was closely related to aerodynamic drag. A low drag flow structure was found by flow analysis, and the separation angle at the roof end was identified as being important to achieve the flow structure. While proceeding with the development of a new production model, a technical issue of the flow structure involving sensitivity to the vehicle velocity was identified in connection with optimization of the roof end shape. (1)A tailgate spoiler was examined for solving this issue.
Technical Paper

Improvement of Practical Electric Consumption by Drag Reducing under Cross Wind

2016-04-05
2016-01-1626
Reducing vehicle fuel consumption has become one of the most important issues in recent years in connection with environmental concerns such as global warming. Therefore, in the vehicle development process, attention has been focused on reducing aerodynamic drag as a way of improving fuel economy. When considering environmental issues, the development of vehicle aerodynamics must take into account real-world driving conditions. A crosswind is one of the representative conditions. It is well known that drag changes in a crosswind compared with a condition without a crosswind, and that the change depends on the vehicle shape. It is generally considered that the influence of a crosswind is relatively small since drag accounts for a small proportion of the total running resistance. However, for electric vehicles, the energy loss of the drive train is smaller than that of an internal combustion engine (ICE) vehicle.
Technical Paper

Aerodynamics Development for a New EV Hatchback Considering Crosswind Sensitivity

2018-04-03
2018-01-0715
An electric vehicle (EV) has less powertrain energy loss than an internal combustion engine vehicle (ICE), so its aerodynamic accounts have a larger portion of drag contribution of the total energy loss. This means that EV aerodynamic performance has a larger impact on the all-electric range (AER). Therefore, the target set for the aerodynamics development for a new EV hatchback was to improving AER for the customer’s benefit. To achieve lower aerodynamic drag than the previous model’s good aerodynamic performance, an ideal airflow wake structure was initially defined for the new EV hatchback that has a flat underbody with no exhaust system. Several important parameters were specified and proper numerical values for the ideal airflow were defined for them. As a result, the new EV hatchback achieves a 4% reduction in drag coefficient (CD) from the previous model.
Technical Paper

Independent Control of Steering Force and Wheel Angles to Improve Straight Line Stability

2014-04-01
2014-01-0065
This paper describes a control method to improve straight-line stability without sacrificing natural steering feel, utilizing a newly developed steering system controlling the steering force and the wheel angle independently. It cancels drifting by a road cant and suppresses the yaw angle induced by road surface irregularities or a side wind. Therefore drivers can keep the car straight with such a little steering input adjustment, thus reducing the driver's workload greatly. In this control method, a camera mounted behind the windshield recognizes the forward lane and calculate the discrepancy between the vehicle direction and the driving lane. This method has been applied to the test car, and the reduction of the driver's workload was confirmed. This paper presents an outline of the method and describes its advantages.
Technical Paper

Improvement in Pitting Resistance of Transmission Gears by Plasma Carburizing Process

1994-03-01
940727
The application of both high strength gear steels and shot peening technology has succeeded in strengthening automotive transmission gears. This technology, though, improves mainly the fatigue strength at the tooth root, but not the pitting property at the tooth face. Therefore, demand has moved to the development of new gear steels with good pitting resistance. In order to improve pitting resistance, the authors studied super carburizing which is characterized by carbide dispersion in the case, especially processed with a plasma carburizing furnace. Firstly, the influence of the carburizing temperature and carburizing period on the carbide morphology was investigated and the optimum carburizing conditions were determined. Secondly, the fatigue strength and pitting resistance was evaluated using carbide dispersed specimens.
Technical Paper

Development of a High-Performance TiA1 Exhaust Valve

1996-02-01
960303
A new high-performance and lightweight TiA1 intermetallic compound exhaust valve has been developed. The TiA1 valve can improve power output and fuel economy by contributing higher engine speeds and a reduction in valvetrain friction. It was achieved by developing a Ti-33.5A1-0.5Si-1Nb-0.5Cr (mass%) intermetallic compound, a precision casting method for TiA1 that provides a low-cost, high-quality process, and a plasma carburizing technique for assuring good wear resistance on the valve stem end, stem and face.
Technical Paper

On-Line Painted Thermal Plastic Exterior Body Panels for Nissan Be-1 and Application to CAE

1988-02-01
880034
This paper describes the plastic body panels developed for the Nissan Be-1 which was released and put on sale in Japan in January 1987. The panels include four body parts: left and right front fenders, front apron and rear apron. They are made of a thermoplastic resin and are produced by injection molding. The top paint coat can be sprayed on all four panels simultaneously with other steel body panels. The panels provide a high-quality appearance that is in no way inferior to the paint quality of steel panels. This is true during initial use as well as over long periods of time. Besides providing weight reductions, they also deliver improved resistance to impacts. CAE process was applied to develop these panels and proved to be quite effective.
Technical Paper

The Development of Second Generation Ceramic Turbocharger Rotor - Further Improvements in Reliability

1988-02-01
880702
Nissan has developed a second generation ceramic turbocharger rotor which provides greater reliability and higher performance than a conventional ceramic rotor. The new rotor is made of silicon nitride, which has demonstrated sufficient strength in vehicle applications. The bonding technique for joining the ceramic rotor to the metal shaft has been confirmed through experimentation to have sufficient reliability. The second generation rotor is featured by the low stress design and higher dynamic strength, and two factors contribute to its higher reliability. The rotor shape was optimized on the basis of results obtained in two analyses of particle impact resistance and applied combined stress. Test results show that the reliability of the second generation rotor have been substantially improved over those of the conventional rotor now being used on production vehicles.
Technical Paper

Development of Improved Metal-Supported Catalyst

1989-02-01
890188
A compact, high-performance and durable metal-supported catalyst has been developed by using the properties of the metal support effectively. The advantages of the metal-surpported catalyst against the ceramic-supported one are higher geometrical surface area, higher heat conductivity and thinner wall thickness. Higher geometlical surface area and higher heat conductivity lead to higher conversion efficiency after durability test and it allows reduction in catalyst volume. And the thinner wall thickness lowers gas flow resistance. But also, the metal-supported catalyst has the disadvantage of larger heat expansion and it requires special structure and material.
Technical Paper

High Performance Differential Gear

1989-02-01
890531
Excellent fuel economy and high performance have been urgent in Japanese automobile industries. With increasing engine power, many of the power train components have to withstand higher loads. Differential pinion gear being one of those highly stressed parts, excellent fatigue and shock resistance have been demanded. At first the fundamental study on the fatigue and impact crack behavior of carburized components was studied and the new grade composed of 0.18%C-0.7%Mn-1.0%Cr-0.4%Mo was alloy designed. Furthermore, Si and P is reduced less than 0.15 and 0.015%, respectively aiming at the reduction of intergranular oxidation and improved case toughness. The differential gear assembly test has proved that the new grade shows three times as high impact strength as that of conventional steel, SCM418, and almost the same as that of SNCM420 containing 1.8%Ni.
Technical Paper

Development of Practical Heads-Up Display for Production Vehicle Application

1989-02-01
890559
THIS PAPER presents an advanced heads-up display which has been newly developed for use in 88 Nissan Silvia model. The HUD consists of a projector with a newly developed high brightness VFD and light-selective film used as a combiner which is coated on the windshield. This combination provides good display legibility even under bright sunlight. The display shows the vehicle speed in a three-digit reading at distance of more than one meter from the driver's eyes. The windshield-coated combiner conforms to U.S. safety standards concerning light transmittance, abrasion and other performance requirements. Experimental data are also presented which substantiate the HUD's high legibility and confirm its effect in enhancing the driver's attention toward the road ahead
Technical Paper

Analysis of Bumper Paint Removal and Development of Paint Removal Equipment

2000-03-06
2000-01-0740
This paper deals with the development of plastics recycling technology, which is one key to resolving environmental and natural resource problems and encouraging recycling activities. Bumpers are among the heaviest plastic auto parts, so the technology for recycling bumpers is strongly required. Paint remaining on bumpers causes the strength of the recycled material to decline and degrades its surface quality. Therefore, unless the paint is removed, it is impossible to use recycled material to manufacture new bumpers. This hampers recycling efforts and results in low-value recycled material. Consequently, it is essential to develop a simple paint removing without chemical substances for practical plastics recycling at low cost. Two topics are discussed in this paper. The first concerns the mechanism of paint removal and the development of a technique for utilizing that mechanism.
Technical Paper

Development of a Wear Resistant Aluminum Alloy for Automotive Components

1999-03-01
1999-01-0350
Hypereutectic Al-Si alloy 390, containing large amounts of hard silicon particles, has mainly been used for wear-resistant alloy applications. In the case of hypereutectic Al-Si alloys, the primary silicon particle size and distribution must be controlled to obtain stable wear resistance. The service life of furnaces and molds is shortened by the high melting and casting temperatures required for controlling primary silicon. Furthermore, machinability is degraded by large primary silicon particles. To overcome these problems, a new wear-resistant Al-Si alloy has been developed which provides good castability and machinability. This alloy also has wear resistance and mechanical properties similar to those of the 390 alloy. Specifically, the problems regarding castability and machinability were solved by decreasing the silicon content of the 390 alloy, but that also reduced wear resistance.
Technical Paper

Development of Plastic Region Tightening 1.6-GPa Ultra-High Strength Bolt with High Delayed Fracture Resistance

2019-04-02
2019-01-1116
A new variable compression turbo (VC-Turbo) engine, which has a multi-link system for controlling the compression ratio from 8:1 to 14:1, requires high axial force for fastening the multi-links because of high input loads and the downsizing requirement. Therefore, it was necessary to develop a 1.6-GPa tensile strength bolt with plastic region tightening. One of the biggest technical concerns is delayed fracture. In this study, quenched and tempered alloy steels were chosen for the 1.6-GPa tensile strength bolt.
X