Refine Your Search

Topic

Author

Search Results

Video

Technical Breakthroughs in Development of a Single Motor Full Hybrid System

2011-11-18
The energy crisis and rising gas price in the 2000s led to a growing popularity of hybrid vehicles. Hyundai-Kia Motors has been challenging to develop the new efficient eco-technology since introducing the mild type compact hybrid electric vehicle for domestic fleet in 2004 to meet the needs of the increasing automotive-related environmental issues. Now Hyundai has recently debuted a full HEV for global market, Sonata Hybrid. This system is cost effective solution and developed with the main purpose of improving fuel consumption and providing fun to drive. Presenter Seok Joon Kim, Hyundai Motor Company
Journal Article

Study on a High Torque Density Motor for an Electric Traction Vehicle

2009-04-20
2009-01-1337
A compact and high performance electric motor, called the 3D motor and designed to achieve output torque density of 100 Nm/L, was developed for use on electric vehicles and hybrid electric vehicles. The motor adopts an axial flux configuration, consisting of a disk-shaped stator sandwiched between two disk-shaped rotors with permanent magnets. It also adopts 9-phase current with a fractional slot combination, both of which increase the torque density. The rated torque output of this high power-density motor is achieved by applying a hybrid cooling system comprising a water jacket on the outer case of the stator and oil dispersion into the air gaps. The mechanical strength of the rotors against centrifugal force and that of the stator against torque exertion were confirmed in mechanical experiments. Several measures such as flux barriers, a chamfered rotor rim, parallel windings, and radially laminated cores were adopted to suppress losses.
Journal Article

Development of Hardware-In-the-Loop Simulation System for Steering Evaluation Using Multibody Kinematic Analysis

2014-04-01
2014-01-0086
The adoption of the electronic controlled steering systems with new technologies has been extended in recent years. They have interactions with other complex vehicle subsystems and it is a hard task for the vehicle developer to find the best solution from huge number of the combination of parameter settings with track tests. In order to improve the efficiency of the steering system development, the authors had developed a steering bench test method for steering system using a Hardware-In-the-Loop Simulation (HILS). In the steering HILS system, vehicle dynamics simulation and the tie rod axial force calculation are required at the same time in the real-time simulation environment. The accuracy of the tie rod axial force calculation is one of the key factors to reproduce the vehicle driving condition. But the calculation cannot be realized by a commercial software for the vehicle dynamics simulation.
Journal Article

Advanced Technology for Dry Multi-Plate Clutch in FWD HEV Transmission (JATCO CVT8 HYBRID)

2015-04-14
2015-01-1094
There has been a growing need in recent years to further improve vehicle fuel efficiency and reduce CO2 emissions. JATCO began mass production of a transmission for rear-wheel-drive (RWD) hybrid vehicle with Nissan in 2010, which was followed by the development of a front-wheel-drive (FWD) hybrid system (JATCO CVT8 HYBRID) for use on a midsize SUV in the U.S. market. While various types of hybrid systems have been proposed, the FWD system adopts a one-motor two-clutch parallel hybrid topology which is also used on the RWD hybrid. This high-efficiency system incorporates a clutch for decoupling the transmission of power between the engine and the motor. The hybrid system was substantially downsized from that used on the RWD vehicle in order to mount it on the FWD vehicle. This paper describes various seal technologies developed for housing the dry multi-plate clutch inside the motor, which was a key packaging technology for achieving the FWD hybrid system.
Technical Paper

Development of a Headway Distance Control System

1998-02-01
980616
This paper describes a headway distance control system for platoon driving on an automated highway system (AHS). The system implemented on a test vehicle is described first, followed by a description of a vehicle control method based on the use of throttle and brake actuators. This method makes it possible to obtain the target acceleration and deceleration regardless of the vehicle speed range and the rate of acceleration or deceleration. Experimental and simulation results obtained with this method are presented. A control method is then described that uses inter-vehicle communication and laser radar to maintain a constant headway between vehicles. The results of simulations and driving tests conducted with three vehicles are presented to illustrate that the use of inter-vehicle communication is highly effective in improving headway control performance.
Technical Paper

Research and Development Work on High-performance Lithium-ion Batteries for EV Application

2008-04-14
2008-01-1332
From the beginning of the 1990s, we have been vigorously investigating a high-performance power source system for application to environmental vehicles, focusing our research and development efforts specifically on lithium-ion batteries. In order to adapt a battery system to the requirements of the target vehicle, battery performance must be predicted and designed more accurately. In the case of hybrid electric vehicles, for example, battery power must be reliably assured. Improving battery power requires quantitative analytical methods as fundamental techniques for understanding the basic processes that take place in a battery. From this perspective, we began constructing a battery simulation model from scratch in the middle of the 1990s concurrently with our battery R&D activities. The model simulates electrode reactions and charge transport and has been used in investigating the influence of these factors on battery performance.
Technical Paper

Road-load Input Contribution Analysis for Suspension Durability using a Multi-axial Road Simulator

2008-04-14
2008-01-1482
The durability test with road-load input is necessary for evaluating durability of body and chassis structure in automotive applications. This paper shows the method to analyze road-load input to a suspension system for development of a simple component level bench test. This method enables the extraction of the essential inputs to evaluate the durability of suspension parts using the transfer function (frequency response function) measured by Multi-axial Road Simulator and wheel force transducers. These extracted inputs contribute to development of a new realistic component bench test.
Technical Paper

Development of a Prediction Method for Passenger Vehicle Aerodynamic Lift using CFD

2008-04-14
2008-01-0801
Increasing expectations for stability at high speed call for the improvement of cars' aerodynamic performance, in particular lift reduction. However, due to styling constraints, traditional spoilers must be avoided and replaced by other solutions like underfloor components. Flow simulation is expected to be a useful tool for lift prediction, but the conventional models used so far did not represent complex geometry details such as the engine compartment and underfloor, and accuracy was insufficient. In the present study, a full vehicle simulation model, including the engine compartment and underfloor details, was used. Other improvements were also made such as optimization of the computational grid and the setting of boundary conditions for reproducing wind tunnel experiments or actual driving, making it possible to predict lift variations due to vehicle geometry changes.
Technical Paper

Research on Large Capacity, High Power Lithium-ion Batteries

2009-04-20
2009-01-1389
Aiming for an environmental vehicle, since the 1990s we have narrowed our focus to the development of an exclusive use lithium-ion battery, and we have strongly advanced our examinations into high-performance power supply systems. In order to adapt a battery to meet vehicle requirements, it is necessary to more accurately predict battery performance, and have the ability to design it. For example, in the applicability to HEVs(Hybrid Electric Vehicles), ensuring battery power with certainty is required, but in order to improve battery power, the basic process that occurs inside the battery was restrained, so it is possible that the quantitative analytical approach is the necessary fundamental technology.
Technical Paper

Design of Lane-Keeping Control with Steering Torque Input for a Lane-Keeping Support System

2001-03-05
2001-01-0480
This paper describes the method used to design the basic control algorithm of a lane-keeping support system that is intended to assist the driver's steering action. Lane-keeping control has been designed with steering torque as the control input without providing a minor loop for the steering angle. This approach was taken in order to achieve an optimum balance of lane-keeping control, ease of steering intervention by the driver and robustness. The servo control system was designed on the basis of H2 control theory. Robustness against disturbances, vehicle nonlinearity and parameter variation was confirmed by μ - analysis. The results of computer simulations and driving tests have confirmed that the control system designed with this method provides the intended performance.
Technical Paper

Evaluation of a Voice-Activated System Using a Driving Simulator

2004-03-08
2004-01-0232
On-board voice-interaction systems such as a voice-activated system or a text -to-speech (TTS) system enable drivers to operate devices or to obtain desired information without relying on visual processes. These systems are aimed to reduce the driver's workload, but there is a concern about their possible effect on mental distraction. This paper describes driving simulator tests that were conducted to examine the potential influence of such systems on driver's mental distraction. The results obtained for all of the indices show that the mental distraction level when operating a voice-activated system is significantly lower than that of a traditional manually operated system.
Technical Paper

Development of a Slip Control System for a Lock-Up Clutch

2004-03-08
2004-01-1227
Lock-up operation of an automatic transmission is known as one good method of improving fuel economy. However, locking up the transmission at low vehicle speeds can often cause undesirable vibration or booming noise. Slip control of the lock-up clutch can resolve these problems, but the speed difference of the lock-up clutch needs to be controlled at a certain value. This control system has to overcome large changes in the parameters of the lock-up system at low vehicle speeds and also changes with regard to the speed ratio in a continuously variable transmission (CVT). In this study, this complex non-linear system has been modeled as a first-order linear parameter varying (LPV) system. A robust control algorithm was applied taking various disturbances into account to design a new slip lock-up control system.
Technical Paper

Application of CAP to Analyze Mechanisms Producing Dummy Injury Readings under U.S. Side Impact Test Conditions

2011-04-12
2011-01-0014
Evaluations of dummy injury readings obtained in regulatory crash tests and new car assessment program tests provide indices for the development of crash safety performance in the process of developing new vehicles. Based on these indices, vehicle body structures and occupant restraint systems are designed to meet the required occupant injury criteria. There are many types of regulatory tests and new car assessment program tests that are conducted to evaluate vehicle safety performance in side impacts. Factoring all of the multiple test configurations into the development of new vehicles requires advanced design capabilities based on a good understanding of the mechanisms producing dummy injury readings. In recent years, advances in computer-aided engineering (CAE) tools and computer processing power have made it possible to run simulations of occupant restraint systems such as side airbags and seatbelts.
Technical Paper

High Power Density Motor and Inverter for RWD Hybrid Vehicles

2011-04-12
2011-01-0351
This paper describes the motor and inverter of Nissan's newly developed parallel hybrid system for rear-wheel-drive hybrid vehicles. The new system incorporates a high-power lithium-ion battery and a one-motor-two-clutch powertrain to achieve both highly responsive acceleration and better fuel economy. As the main components of the hybrid system, both the motor and the inverter have been developed and are manufactured in house to attain high power density for providing responsive acceleration, a quiet EV drive mode and improved fuel economy. Because the motor is located between the engine and the transmission, it had to be shortened to stay within the length allowed for the powertrain. The rotary position sensor and clutch actuator are located inside the rotor to meet the size requirement. High-density winding of square-shaped wire and a small power distribution busbar also contribute to the compact configuration.
Technical Paper

Development of an Electrically-Driven Intelligent Brake Unit

2011-04-12
2011-01-0572
An electrically-driven, intelligent brake unit has been developed, to be combined with a regenerative braking system in electric vehicles (EVs) and hybrid electric vehicles (HEVs) which went into production in 2010 - 11. The brake pedal force is assisted by an electrically driven motor, without using vacuum pressure, unlike conventional braking systems. The actuator can be implemented to coordinate with a regenerative braking system, and to have adjustable pedal feel through use of a unique pressure-generating mechanism and a pedal-force compensator. In this paper, we describe features of the actuator mechanism and performance test results
Technical Paper

Development of “Hybrid EPS”

2011-04-12
2011-01-0564
Hydraulic power steering is applied for petrol and diesel models of Infinity M series to provide supreme feeling of steering. Power assist of hydraulic power steering (here after called HPS), however, does not work when hybrid vehicle is in EV drive mode because the engine, which is the power source stops and the power is not supplied. Electric Power Steering (hereafter called EPS), therefore, “MUST” be installed to assist the power. Here comes the need that Nissan has developed our Hybrid EPS for Infinity M Hybrid model to keep providing supreme feeling of steering of hydraulic power steering without huge packaging change from the standard packaging of petrol & diesel models with hydraulic power steering. Our Hybrid EPS is the 1st hybrid EPS system in the world that is effectuated by oil pressure, and succesively realized by unique and excellent technology of Nissan.
Technical Paper

Appling CAE to Understand the Causality of Dummy Neck Injury Readings

2011-04-12
2011-01-1069
The progress of computer technology and CAE methodology makes it possible to simulate dummy injury readings in vehicle crash simulations. Dummy neck injuries are generally more difficult to simulate than injuries to other regions such as the head or chest. Accordingly, improving the accuracy of dummy neck injury data is a major concern in frontal occupant safety simulations. This paper describes the use of an advanced airbag modeling methodology to improve the accuracy of dummy neck injury readings. First, the following items incorporated in the advanced airbag model are explained. (1) The Finite Point Method (FPM) is used to simulate the flow of gas. (2) A folding model is applied to simulate the folded condition. (3) The fabric material properties used in the simulation take into account anisotropy in the fiber directions and the nonlinear, hysteresis characteristics of stiffness.
Technical Paper

Development of Regenerative Cooperative Braking System with Conventional ESC

2014-04-01
2014-01-0331
HEV and EV markets are in a rapid expansion tendency. Development of low-cost regenerative cooperation brake system is needed in order to respond to the consumers needs for HEV and EV. Regenerative cooperation brake system which HEV and EV are generally equipped with has stroke simulator. We developed simple composition brake system based on the conventional ESC unit without the stroke simulator, and our system realized a low-cost regenerative cooperation brake. The key technologies are the quiet pressurization control which can be used in the service application, which is to make brake force depending on brake travel, by gear pump and the master cylinder with idle stroke to realize regenerative cooperation brake. Thanks to the key technologies, both the high regenerative efficiency and the good service brake feeling were achieved.
Technical Paper

Evaluation of an Open-grill Vehicle Aerodynamics Simulation Method Considering Dirty CAD Geometries

2018-04-03
2018-01-0733
In open-grille vehicle aerodynamics simulation using computational fluid dynamics, in addition to basic flow characteristics, such as turbulent flow with a Reynolds number of several million on the bluff body, it is important to accurately estimate the cooling air flow introduced from the front opening. It is therefore necessary to reproduce the detailed geometry of the entire vehicle including the engine bay as precisely as possible. However, there is a problem of generating a good-quality calculation grid with a small workload. It usually takes several days to a week for the pretreatment process to make the geometry data ‘clean’ or ‘watertight’. The authors proposed a computational method for complex geometries with a hierarchical Cartesian grid and a topology-independent immersed boundary method with dummy cells that discretize the geometry on a cell-by-cell basis and can set an imaginary point arbitrarily.
Technical Paper

A Study of the Power Transfer Systems for HEVs

2006-04-03
2006-01-0668
A key factor influencing the performance of a hybrid electric vehicle (HEV) is how the engine and motor-generator (MG) are combined with the vehicle. There have been several types of combinations such as power transfer by using the mechanical transmission of conventional vehicles or the electrical transmission originally designed for HEVs. The objectives of this research were to clarify fuel economy characteristics according to the type of power transfer system used and to identify the requirements for MG system development by analyzing MG operation conditions in each power transfer mode. HEV systems for passenger car use were modeled on the basis of a functional classification. Simulations were conducted using the characteristics of the power transfer systems as parameters to evaluate fuel economy tendencies under several driving modes. The mechanism of the fuel economy tendencies was then analyzed to evaluate quantitatively the effect of each power transfer system on fuel economy.
X