Refine Your Search

Topic

Author

Search Results

Technical Paper

Research on Diamond-Like Carbon Coatings for Low-Friction Valve Lifters

2003-03-03
2003-01-1101
One important development area for obtaining better fuel economy is to reduce mechanical friction losses in engine components. The valvetrain is a significant source of mechanical friction loss in an automobile engine, especially at low speeds where fuel economy is most important. This paper describes the potential use of diamond-like carbon (DLC) coatings at the cam/follower interface in a bucket-type valvetrain. Using a pin-on-disk tester, a motored valvetrain friction apparatus and a bench test rig, the frictional performance of DLC coatings was tested. Experimental data indicate that under a lubricated condition, DLC coatings produced by a plasma CVD (chemical vapor deposition) technique did not show a sufficient effect on reducing friction (only a 20-25% reduction) contrary to our expectations. DLC coatings prepared by arc-ion plating and containing less hydrogen showed superior frictional performance compared with CVD-DLC coatings under a lubricated condition.
Technical Paper

Development of a New-Generation Lightweight 3-Liter V6 Nissan Engine

1994-03-01
940991
This paper presents a new-generation, lightweight, 3-liter V6 engine that has been developed for use in the next Nissan Maxima. The distinctive features of this new engine, VQ30DE, is its compact, lightweight design and excellent fuel economy. The basic construction of the engine is characterized by its 60-degree V6 configuration, chain-driven DOHC and high-pressure die cast aluminum cylinder block. A two-way cooling system was adopted with the aim of shortening the warm-up time of the cylinder liners. The new engine has been designed to comply with the tougher emission standards, the OBD-II requirements and California's new evaporative emission standard.
Technical Paper

Development of a High-Performance TiA1 Exhaust Valve

1996-02-01
960303
A new high-performance and lightweight TiA1 intermetallic compound exhaust valve has been developed. The TiA1 valve can improve power output and fuel economy by contributing higher engine speeds and a reduction in valvetrain friction. It was achieved by developing a Ti-33.5A1-0.5Si-1Nb-0.5Cr (mass%) intermetallic compound, a precision casting method for TiA1 that provides a low-cost, high-quality process, and a plasma carburizing technique for assuring good wear resistance on the valve stem end, stem and face.
Technical Paper

Establishment of a Method for Predicting Cam Follower Wear in the Material Development Process

1990-10-01
902087
Many studies have been reported concerning fundamental tribological research aimed at reducing the severe valve train wear that occurs in internal combustion engines. In this paper, cam follower wear was theoretically and experimentally analyzed at the material development stage. Statistical methods have been applied to practical use in determining the material properties quantitatively. Based on the results, a method for predicting cam follower wear has been derived which has made it possible to develop new valve train systems more efficiently. Further, a guideline for developing new wear resistant materials was also clarified. Finally, the precision high chrominum cast iron rocker arm is described, along with its application to a new NISSAN high-performance 4-cylinder DOHC engine, as an example of the use of this method to develop new wear-resistant materials.
Technical Paper

A New 1.6-Liter Twin-Cam 16-Valve Nissan Engine

1991-02-01
910677
Nissan has developed a new GA16DE engine for use in the new 1991 Sentra. The major development aims for this engine were to achieve ample torque at low to intermediate engine speed and smooth throttle response. These aims, of course, had to be compatible with good fuel economy, quietness, maintenance-free operation and high reliability. In addition, It was necessary to achieve a compact package size despite the twin-cam design. All of those objectives have been attained through the use of a super-long and aerodynamic intake system, variable valve timing control, a low friction, maintenance-free, direct acting valve system, dual direction fuel injectors, and a two-stage cam drive system. This paper discuss the major development objectives, basic engine structure and principal component parts.
Technical Paper

Development of Four Cylinder SR Engine

1990-09-01
901714
The SR engine is a new medium-size, all aluminum (cylinder block, head, rocker cover and oil pan) in-line 4-cylinder gasoline powerplant developed as a replacement for CA engine in Nissan's compact passenger cars. The development aim set for this engine was to achieve excellent power output and ample torque in the middle-and high-speed ranges, as well as a clear, linear engine sound up to the red zone. These performance targets have been achieved through the use of the 4-valve-per-cylinder DOHC design featuring a Y-shaped valve rocker arm system. This system allows a straight intake port for high power output and a narrow valve angle for a compact combustion chamber. The result is ample torque output as well as good fuel economy.
Technical Paper

Development of a High Strength Valve Spring

1989-02-01
890220
Development of a high strength valve spring for automotive engines achieves higher power output and better fuel economy. New material which consists of finely structure and subjected to advanced shot peening, has been developed. Stress analysis of the valve spring moving edge, using the finite element method, has been done for effective application. The merits of this new spring have been confirmed by engine experiments.
Technical Paper

High Performance Differential Gear

1989-02-01
890531
Excellent fuel economy and high performance have been urgent in Japanese automobile industries. With increasing engine power, many of the power train components have to withstand higher loads. Differential pinion gear being one of those highly stressed parts, excellent fatigue and shock resistance have been demanded. At first the fundamental study on the fatigue and impact crack behavior of carburized components was studied and the new grade composed of 0.18%C-0.7%Mn-1.0%Cr-0.4%Mo was alloy designed. Furthermore, Si and P is reduced less than 0.15 and 0.015%, respectively aiming at the reduction of intergranular oxidation and improved case toughness. The differential gear assembly test has proved that the new grade shows three times as high impact strength as that of conventional steel, SCM418, and almost the same as that of SNCM420 containing 1.8%Ni.
Technical Paper

Nissan Electronically Controlled Four Speed Automatic Transmission

1989-02-01
890530
This paper describes the Nissan R01A model automatic transmission, focusing in particular on the basic design concept, control system and the various control techniques it incorporates. This 4-speed transmission, installed in Nissan's rear-wheel-drive vehicles, was designed from the ground up and significant construction and control mechanism improvements were made over the former conventional model. With a compact gear arrangement consisting of two sets of planetary gears, this transmission features a new electro-hydraulic control system which not only provides optimum shifting and lock-up points, but also modulates the hydraulic pressure electronically to achieve superior shift quality. Control over the transmission is integrated with engine control to deliver improved driveability and better fuel economy. Different transmission variations have been developed to create a versatile lineup for rear-wheel-drive vehicles.
Technical Paper

Development of a New 12 Valve 4 Cylinder Engine

1988-11-01
881776
The 1.5 1 GA15 engine is a new inline 4 cylinder engine. The GA15 fully meets the major development objectives of sufficient torque at low and middle engine speeds, high power output, good fuel economy and quiet engine operation. Its structure features a compact combustion chamber with a small bore and long stroke, aerodynamic intake ports, a stiff engine cylinder block with a deep skirt and bearing beam, a newly designed silentrunning chaine, and pistons with full floating pins. High quality was achieved by adopting the latest methods in its development: vibration analysis of the assembled engine and transmission, FEM model, rigidity analysis of the cylinder block and head, and analysis of air flow in the intake port and movement of the timing chain.
Technical Paper

A New Approach to Finding Optimum Planetary Gear Trains for Automatic Transmissions

1993-03-01
930676
There has been a growing need to develop more compact automatic transmissions with a greater number of speeds for better fuel economy and better driveability. This study investigated a method for determining suitable planetary gear trains for today's transmissions. A computer program has been developed for application to five-speed transmissions consisting of two planetary gearsets. By analyzing various gear train possibilities, the program can identify which gearsets are suitable for different conditions, including the number of speeds, the number of binding elements, topological suitability and other factors.
Technical Paper

An Electronic Carburetor Controller

1979-02-01
790743
An electronically controlled closed-loop carburetor system has been developed for production application in Datsun car models. Providing a means of complying with Japanese Emission Standards, this design features the electronic control of carburetor supplied fuel with significantly improved emission performance and fuel economy. Technological advances include the noteworthy compensation of oxygen sensor output variations and improved transient emission.
Technical Paper

New Design of Cooling System with Computer Simulation and Engine Compartment Simulator

1993-04-01
931075
The engine cooling system is required to provide much higher performance today owing to the improved power output of engines and the trend toward a more compact engine compartment. For front engine/rear drive vehicles equipped with a fluid coupling drive fan, one of the main problems that must be dealt with is the rise in coolant temperature during idling. This paper presents a new method to simulate the engine coolant temperature under idling condition, and an improved engine cooling system that features a totally redesigned fan blade for maximum efficiency. This new system, consisting of a high performance cooling fan shroud and coupling, achieves a substantial noise reduction and contributes to fuel economy and power output improvements.
Technical Paper

New Fuel Injection Method for Better Driveability

1988-02-01
880420
In our new fuel injection method, the injector for each cylinder is triggered twice per combustion cycle. The first injection is triggered as early as possible to obtain a good fuel mixture quality. The second injection is triggered as late as possible and as close to the intake valve opening so as to obtain a constant air-fuel ratio even during rapid acceleration. Furthermore, in order to prevent, misfire, timing is calculated based on the fuel amount when the fuel injection occurs. Driveability is improved over a wider range of driving conditions while maintaining good fuel economy and omission control.
Technical Paper

Development of a Compact 3-Liter V6 Nissan Engine

1992-02-01
920672
This paper presents a compact 3-liter DOHC V6 engine that has been newly designed for the Nissan Maxima. The aims set for the development of this new engine were to achieve a compact package and excellent fuel efficiency. The engine is built around a 4-valve-per-cylinder configuration with a high compression ratio and incorporates a variable valve timing control system, aerodynamic intake ports and roller rocker arms. These features enable it to provide good fuel economy while delivering excellent acceleration. The compact package has been achieved by adopting a 2-stage cam drive, narrow angle valve geometry and an optimized arrangement for the endpivot type hydraulic lash adjusters.
Technical Paper

A Robotic Driver on Roller Dynamometer with Vehicle Performance Self Learning Algorithm

1991-02-01
910036
A robotic driver has been designed on the basis of an analysis of a human driver's action in following a given driving schedule. The self-learning algorithm enables the robot to learn the vehicle characteristics without human intervention. Based on learned relationships, the robotic driver can determine an appropriate accelerator position and execute other operations through sophisticated calculations using the future scheduled vehicle speed and vehicle characteristics data. Compensation is also provided to minimize vehicle speed error. The robotic driver can reproduce the same types of exhaust emission and fuel economy data obtained with human drivers with good repeatability. It doesn't require long preparation time. Thereby making it possible to reduce experimentation work in the vehicle development process while providing good accuracy and reliability.
Technical Paper

The Nissan 2.4L In-Line 4-Cylinder Engine

1989-02-01
890776
Nissan's new 2.4-liter in-line, 4-cylinder gasoline engine, the “KA24E,” was developed for the worldwide automobile market, but exclusively for the North American market. It has been released for Nissan's new 1989 model, high-performance sports car, the “240SX”, and will also be mounted in such forthcoming models as the new 1990 “AXXESS”. The major objectives in developing this new engine were to achieve high performance at practical driving speeds, especially at low- and middle-engine speeds, quiet engine operation, reliability, fuel economy and serviceability, all of which are essential factors in daily driving. For realizing these objectives, multi-valves, aerodynamic intake ports, a high-rigidity cylinder block, a silent single timing chain, and hydraulic valve lash adjusters were incorporated into this engine. Furthermore, to develop the engine, almost all components were redesigned using computer design techniques, and checked by extensive testing.
Technical Paper

Development of the New V6 3.5L Gasoline Direct Injection Engine

2017-03-28
2017-01-1022
1 The new V6 3.5L gasoline direct injection engine, VQ35DD, was developed for the midsize premium SUV segment. This engine is the newest descendant of the VQ engine family and incorporates the latest technologies focused on enhanced driving performance, combined with high-level of environmental performance. Additional improvements include torque and power increase as well as improved fuel economy and emission performance. Simultaneous realization of both throttle response and smoothness are also in focus. To achieve these features, direct injection system, high response motor-driven intake Continuously Variable Valve Timing Control (e-Motor VVT), individual spark timing, mirror bore spray coating on the cylinder block, and various friction reduction technologies, such as variable displacement oil pump, are applied. Maximum engine power and torque are increased by 8 to 10%. Minimum BSFC is improved by 6%, combined with a wider spread of lower BSFC range considering CVT applications.
Technical Paper

NVH Development of a High Torque SUV Using a Novel Active Torque Rod System

2018-04-03
2018-01-0685
During the last decade, fuel economy mandates (CAFE regulations) have driven engine downsizing and down-speeding trends. More recently, downsized turbos are percolating down to heavier SUVs and trucks. Larger/heavier vehicles require high torque engines to provide attractive dynamic performance. While higher torque requirements can be satisfied with new innovations like the variable compression engine, larger and more upscale vehicles also need to deliver higher quietness requirements. For this, the vibration control system for combustion induced forces with high torque engines become very important. To address both dynamic performance and quietness requirements, active engine mounts have been previously adopted, however challenges for light-weighting, downsizing, and costs have still persisted.
Technical Paper

Small Engine - Concept Emission Vehicles

1971-02-01
710296
Three Japanese automobile manufacturers-Mitsubishi Motors Corp., Nissan Motor Co., Ltd., and Toyo Kogyo Co., Ltd.-have been making efforts over the past three years to design and develop effective thermal reactor-exhaust gas recirculation and catalytic converter systems suitable for small engines. The work is being done by members participating in the IIEC (Inter-Industry Emission Control) Program, and the exhaust emission levels of the concept vehicles developed by these companies have met the goal established by the IIEC Program at low mileage. Each system, however, has a characteristic relationship between exhaust emission level and loss of fuel economy. Much investigation is required, particularly with respect to durability, before any system that will fully satisfy all service requirements can be completed. This paper reports the progress of research and development of the individual concept vehicles.
X