Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Video

Technical Breakthroughs in Development of a Single Motor Full Hybrid System

2011-11-18
The energy crisis and rising gas price in the 2000s led to a growing popularity of hybrid vehicles. Hyundai-Kia Motors has been challenging to develop the new efficient eco-technology since introducing the mild type compact hybrid electric vehicle for domestic fleet in 2004 to meet the needs of the increasing automotive-related environmental issues. Now Hyundai has recently debuted a full HEV for global market, Sonata Hybrid. This system is cost effective solution and developed with the main purpose of improving fuel consumption and providing fun to drive. Presenter Seok Joon Kim, Hyundai Motor Company
Journal Article

Study on a High Torque Density Motor for an Electric Traction Vehicle

2009-04-20
2009-01-1337
A compact and high performance electric motor, called the 3D motor and designed to achieve output torque density of 100 Nm/L, was developed for use on electric vehicles and hybrid electric vehicles. The motor adopts an axial flux configuration, consisting of a disk-shaped stator sandwiched between two disk-shaped rotors with permanent magnets. It also adopts 9-phase current with a fractional slot combination, both of which increase the torque density. The rated torque output of this high power-density motor is achieved by applying a hybrid cooling system comprising a water jacket on the outer case of the stator and oil dispersion into the air gaps. The mechanical strength of the rotors against centrifugal force and that of the stator against torque exertion were confirmed in mechanical experiments. Several measures such as flux barriers, a chamfered rotor rim, parallel windings, and radially laminated cores were adopted to suppress losses.
Journal Article

Advanced Technology for Dry Multi-Plate Clutch in FWD HEV Transmission (JATCO CVT8 HYBRID)

2015-04-14
2015-01-1094
There has been a growing need in recent years to further improve vehicle fuel efficiency and reduce CO2 emissions. JATCO began mass production of a transmission for rear-wheel-drive (RWD) hybrid vehicle with Nissan in 2010, which was followed by the development of a front-wheel-drive (FWD) hybrid system (JATCO CVT8 HYBRID) for use on a midsize SUV in the U.S. market. While various types of hybrid systems have been proposed, the FWD system adopts a one-motor two-clutch parallel hybrid topology which is also used on the RWD hybrid. This high-efficiency system incorporates a clutch for decoupling the transmission of power between the engine and the motor. The hybrid system was substantially downsized from that used on the RWD vehicle in order to mount it on the FWD vehicle. This paper describes various seal technologies developed for housing the dry multi-plate clutch inside the motor, which was a key packaging technology for achieving the FWD hybrid system.
Technical Paper

Research and Development Work on High-performance Lithium-ion Batteries for EV Application

2008-04-14
2008-01-1332
From the beginning of the 1990s, we have been vigorously investigating a high-performance power source system for application to environmental vehicles, focusing our research and development efforts specifically on lithium-ion batteries. In order to adapt a battery system to the requirements of the target vehicle, battery performance must be predicted and designed more accurately. In the case of hybrid electric vehicles, for example, battery power must be reliably assured. Improving battery power requires quantitative analytical methods as fundamental techniques for understanding the basic processes that take place in a battery. From this perspective, we began constructing a battery simulation model from scratch in the middle of the 1990s concurrently with our battery R&D activities. The model simulates electrode reactions and charge transport and has been used in investigating the influence of these factors on battery performance.
Technical Paper

Research on Large Capacity, High Power Lithium-ion Batteries

2009-04-20
2009-01-1389
Aiming for an environmental vehicle, since the 1990s we have narrowed our focus to the development of an exclusive use lithium-ion battery, and we have strongly advanced our examinations into high-performance power supply systems. In order to adapt a battery to meet vehicle requirements, it is necessary to more accurately predict battery performance, and have the ability to design it. For example, in the applicability to HEVs(Hybrid Electric Vehicles), ensuring battery power with certainty is required, but in order to improve battery power, the basic process that occurs inside the battery was restrained, so it is possible that the quantitative analytical approach is the necessary fundamental technology.
Technical Paper

High Power Density Motor and Inverter for RWD Hybrid Vehicles

2011-04-12
2011-01-0351
This paper describes the motor and inverter of Nissan's newly developed parallel hybrid system for rear-wheel-drive hybrid vehicles. The new system incorporates a high-power lithium-ion battery and a one-motor-two-clutch powertrain to achieve both highly responsive acceleration and better fuel economy. As the main components of the hybrid system, both the motor and the inverter have been developed and are manufactured in house to attain high power density for providing responsive acceleration, a quiet EV drive mode and improved fuel economy. Because the motor is located between the engine and the transmission, it had to be shortened to stay within the length allowed for the powertrain. The rotary position sensor and clutch actuator are located inside the rotor to meet the size requirement. High-density winding of square-shaped wire and a small power distribution busbar also contribute to the compact configuration.
Technical Paper

Development of an Electrically-Driven Intelligent Brake Unit

2011-04-12
2011-01-0572
An electrically-driven, intelligent brake unit has been developed, to be combined with a regenerative braking system in electric vehicles (EVs) and hybrid electric vehicles (HEVs) which went into production in 2010 - 11. The brake pedal force is assisted by an electrically driven motor, without using vacuum pressure, unlike conventional braking systems. The actuator can be implemented to coordinate with a regenerative braking system, and to have adjustable pedal feel through use of a unique pressure-generating mechanism and a pedal-force compensator. In this paper, we describe features of the actuator mechanism and performance test results
Technical Paper

Development of “Hybrid EPS”

2011-04-12
2011-01-0564
Hydraulic power steering is applied for petrol and diesel models of Infinity M series to provide supreme feeling of steering. Power assist of hydraulic power steering (here after called HPS), however, does not work when hybrid vehicle is in EV drive mode because the engine, which is the power source stops and the power is not supplied. Electric Power Steering (hereafter called EPS), therefore, “MUST” be installed to assist the power. Here comes the need that Nissan has developed our Hybrid EPS for Infinity M Hybrid model to keep providing supreme feeling of steering of hydraulic power steering without huge packaging change from the standard packaging of petrol & diesel models with hydraulic power steering. Our Hybrid EPS is the 1st hybrid EPS system in the world that is effectuated by oil pressure, and succesively realized by unique and excellent technology of Nissan.
Technical Paper

Development of Regenerative Cooperative Braking System with Conventional ESC

2014-04-01
2014-01-0331
HEV and EV markets are in a rapid expansion tendency. Development of low-cost regenerative cooperation brake system is needed in order to respond to the consumers needs for HEV and EV. Regenerative cooperation brake system which HEV and EV are generally equipped with has stroke simulator. We developed simple composition brake system based on the conventional ESC unit without the stroke simulator, and our system realized a low-cost regenerative cooperation brake. The key technologies are the quiet pressurization control which can be used in the service application, which is to make brake force depending on brake travel, by gear pump and the master cylinder with idle stroke to realize regenerative cooperation brake. Thanks to the key technologies, both the high regenerative efficiency and the good service brake feeling were achieved.
Technical Paper

A Study of the Power Transfer Systems for HEVs

2006-04-03
2006-01-0668
A key factor influencing the performance of a hybrid electric vehicle (HEV) is how the engine and motor-generator (MG) are combined with the vehicle. There have been several types of combinations such as power transfer by using the mechanical transmission of conventional vehicles or the electrical transmission originally designed for HEVs. The objectives of this research were to clarify fuel economy characteristics according to the type of power transfer system used and to identify the requirements for MG system development by analyzing MG operation conditions in each power transfer mode. HEV systems for passenger car use were modeled on the basis of a functional classification. Simulations were conducted using the characteristics of the power transfer systems as parameters to evaluate fuel economy tendencies under several driving modes. The mechanism of the fuel economy tendencies was then analyzed to evaluate quantitatively the effect of each power transfer system on fuel economy.
Technical Paper

Development of a Lithium-ion Battery System for HEVs

2000-03-06
2000-01-1057
This paper describes a high-power lithium-ion battery system that has been newly developed for application to hybrid electric vehicles (HEVs). The battery system was designed on the premise of an underfloor location so as to avoid sacrificing interior spaciousness while providing the power output and recharge performance required by the hybrid propulsion system. To meet these requirements, efforts were made to increase the specific power and to reduce the heat generation of the battery to previously unattained levels. As a result, exceptionally high specific power of 1,200 W/kg per cell, battery pack power of 25kW at 20% state of charge (SOC), and high charge/discharge efficiency of more than 95% in the urban driving schedule has been achieved. The battery pack is composed of two box-shaped modules designed with a low height in consideration of underfloor mountability.
Technical Paper

The Nissan Hybrid Vehicle

2000-04-02
2000-01-1568
Technologies applied to the Nissan Tino Hybrid, marketed in March 2000, in Japan, are expected to evolve into the core powertrain technologies of the future, for the following technical advantages inherent to hybrid EVs: 1 Regeneration of deceleration energy 2 Motor driven propulsion at low speed, combined with power-assisted operation in the mid- and high-load ranges. It is expected that a number of models will be introduced to the market in the future, which pursue these advantages in various forms, resulting in HEV technologies to accelerate the use of electric power for the vehicle. Fuel cell vehicles will be included in this future scenario. In this paper, our view on the future HEV technologies will be described. In addition, the latest technologies applied to the Nissan Tino Hybrid will be introduced.
Technical Paper

Functional Design of a Motor Integrated CVT for a Parallel HEV

1999-03-01
1999-01-0753
We succeeded in developing a parallel hybrid electric vehicle (HEV) with a fuel efficiency in the 10-15 mode more than double that of existing vehicles of the same class of driving performance. A prominent feature of this HEV system is the belt-drive continuously variable transmission (CVT) with built-in traction motor and powder clutch. Adopting a more efficient configuration proved effective in minimizing cost increases and loss of space utility and offered the same reliability provided by existing vehicles. This paper discusses the functional design aspects of the parallel HEV system, which holds great promise for viable mass production.
Technical Paper

Study of a High-Power Lithium-Ion Battery for Parallel HEV Application

1999-03-01
1999-01-1155
Our studies of the lithium-ion battery system have shown considerably more power capability than some existing batteries. Based on these results, we have developed a lithium-ion battery for parallel hybrid electric vehicle (PHEV) application. This battery system provides around ten times the specific power of conventional batteries and also achieves high recharging performance and high charge/discharge efficiency. Evaluation results indicate that it is a highly promising energy source for PHEVs.
Technical Paper

DEVELOPMENT OF MOTOR AND INVERTER FOR RWD HYBRID VEHICLES

2011-05-17
2011-39-7239
At Nissan we have developed a new parallel hybrid system for rear-wheel-drive hybrid vehicles. As the main components of the hybrid system, both the motor and the inverter have been developed and are manufactured in house to attain high power density for providing responsive acceleration, a quiet EV drive mode and improved fuel economy. Because the motor is located between the engine and the transmission, it had to be shortened to be within the length allowed for the powertrain. Therefore, new technologies have been developed such as high-density, square-shaped windings and an optimized magnetic circuit specially designed for concentrated winding motors. The inverter is sized to a 12V battery, which it replaces in the engine compartment. Despite its compact size, the inverter must have rather large current capacity to drive a high-power motor. Heat management is critical to the design of a small but high-power inverter.
Journal Article

Silicon Carbide Inverter for EV/HEV Application featuring a Low Thermal Resistance Module and a Noise Reduction Structure

2017-03-28
2017-01-1669
This paper presents the technologies incorporated in an electric vehicle (EV)/hybrid electric vehicle (HEV) inverter built with power semiconductors of silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) instead of conventional silicon (Si) insulated gate bipolar transistors (IGBTs). A SiC inverter prototype of 2.9 L in size for driving an 80-kW motor was fabricated and evaluated on a motor test bench. The SiC inverter prototype attained average efficiency of 98.5% in the Worldwide harmonized Light-duty Test Cycle (WLTC) driving mode. The two main technologies achieved with this SiC inverter prototype are described. The first one is a new direct-cooled power module with a thick copper (Cu) heat spreader located under the semiconductors that improves thermal resistance by 34% compared with a conventional direct-cooled power module.
Technical Paper

Study of Position Sensorless Control to Generator for 100% Electric-Drive Hybrid Vehicles

2023-09-29
2023-32-0178
There are two primary technical issues in the application of position sensorless control to generators for 100% electric-drive hybrid vehicles. The first is the risk of losing control when position sensorless estimation methods are changed in accordance with the generator speed, while. The second is the reduction in the maximum torque if the rate of change in the generator speed is extremely large in a relatively low-rotation-speed area. This study proposes countermeasures for each issue and their effects examines them via simulations and experiments.
X