Refine Your Search

Topic

Author

Search Results

Technical Paper

Modeling the Spark Ignition Engine Warm-Up Process to Predict Component Temperatures and Hydrocarbon Emissions

1991-02-01
910302
In order to understand better the operation of spark-ignition engines during the warm-up period, a computer model had been developed which simulates the thermal processes of the engine. This model is based on lumped thermal capacitance methods for the major engine components, as well as the exhaust system. Coolant and oil flows, and their respective heat transfer rates are modeled, as well as friction heat generation relations. Piston-liner heat transfer is calculated based on a thermal resistance method, which includes the effects of piston and ring material and design, oil film thickness, and piston-liner crevice. Piston/liner crevice changes are calculated based on thermal expansion rates and are used in conjunction with a crevice-region unburned hydrocarbon model to predict the contribution to emissions from this source.
Journal Article

NOx Reduction Using a Dual-Stage Catalyst System with Intercooling in Vehicle Gasoline Engines under Real Driving Conditions

2018-04-03
2018-01-0335
Selective catalytic reduction (SCR) of nitrogen oxides (NOx) is used in diesel-fueled mobile applications where urea is an added reducing agent. We show that the Ultera® dual-stage catalyst, with intercooling aftertreatment system, intrinsically performs the function of the SCR method in nominally stoichiometric gasoline vehicle engines without the need for an added reductant. We present that NOx is reduced during the low-temperature operation of the dual-stage system, benefiting from the typically periodic transient operation (acceleration and decelerations) with the associated swing in the air/fuel ratio (AFR) inherent in mobile applications, as commonly expected and observed in real driving. The primary objective of the dual-stage aftertreatment system is to remove non-methane organic gases (NMOG) and carbon monoxide (CO) slip from the vehicle’s three-way catalyst (TWC) by oxidizing these constituents in the second stage catalyst.
Technical Paper

Combustion Chamber Deposit Effects on Hydrocarbon Emissions from a Spark-Ignition Engine

1997-10-01
972887
A dynamometer-mounted four-cylinder Saturn engine was used to accumulate combustion chamber deposits (CCD), using an additized fuel. During each deposit accumulation test, the HC emissions were continuously measured. The deposit thickness at the center of the piston was measured at the beginning of each day. After the 50 and 35-hour tests, HC emissions were measured with isooctane, benzene, toluene, and xylene, with the deposited engine, and again after the deposits had been cleaned from the engine. The HC emissions showed a rapid rise in the first 10 to 15 hours and stabilization after about 25 hours of deposit accumulation. The HC increase due to CCD accumulation accounted for 10 to 20% of the total engine-out HC emissions from the deposit build-up fuel and 10 to 30% from benzene, isooctane, toluene, and xylene, making CCDs a significant HC emissions source from this engine. The HC emissions stabilized long before the deposit thickness.
Technical Paper

Contribution of Oil Layer Mechanism to the Hydrocarbon Emissions from Spark-Ignition Engines

1997-10-01
972892
A research program designed to measure the contribution from fuel absorption in the thin layer of oil, lubricating the cylinder liner, to the total and speciated HC emissions from a spark ignition engine has been performed. The logic of the experiment design was to test the oil layer mechanism via variations in the oil layer thickness (through the lubricant formulations), solubility of the fuel components in the lubricants, and variations in the crankcase gas phase HC concentration (through crankcase purging). A set of preliminary experiments were carried out to determine the solubility and diffusivity of the fuel components in the individual lubricants. Engine tests showed similar HC emissions among the tested lubricants. No consistent increase was observed with oil viscosity (oil film thickness), contrary to what would be expected if fuel-oil absorption was contributing significantly to engine-out HC. Similarly, no effect of crankcase purging could be observed.
Technical Paper

A Study of an Analysis Method for Trace Substances in Vehicle Exhaust Gas

2007-04-16
2007-01-0306
A new method for measuring unregulated substances in the exhaust gas is being investigated to clarify the influence of the vehicles' exhaust emissions into the environment. This paper explains our work on developing an analysis method for detecting and quantifying trace substances in the exhaust gas. A new analysis method was examined that uses thermal desorption to analyze trace amounts of polycyclic aromatic hydrocarbons (PAHs) in vehicle exhaust gas. This technique is faster than conventional methods and does not require any preconditioning of the samples before analysis. While lead and chloromethane were detected in the exhaust gas samples, it was made clear that these substances did not originate in the engine system. Accordingly, the results of this study indicate that careful attention must be paid to the test environment and the presence of measurement interfering substances in exhaust samples when measuring trace constituents in the exhaust gas from low-emission vehicles.
Technical Paper

Analysis and Prediction of Unburned HCs in a Lean-Burn Engine

2007-04-16
2007-01-0477
Three-dimensional combustion simulation tools together with the Universal Coherent Flamelet Model (UCFM), a flame propagation model, have been applied to SI lean-burn combustion to study the influence of the equivalence ratio on the amount of unburned hydrocarbons (HCs). Unburned HCs from piston-cylinder crevices were taken into the consideration by using a calculation grid incorporating the actual crevice volume and shape and by applying an autoignition model to post-flame phenomena. The calculation results show the general tendencies for the total amount of unburned HCs and their distribution in the combustion chamber.
Technical Paper

Liquid Fuel Visualization Using Laser-Induced Fluoresence During Cold Start

1998-10-19
982466
The presence of liquid fuel inside the engine cylinder is believed to be a strong contributor to the high levels of hydrocarbon emissions from spark ignition (SI) engines during the warm-up period. Quantifying and determining the fate of the liquid fuel that enters the cylinder is the first step in understanding the process of emissions formation. This work uses planar laser induced fluorescence (PLIF) to visualize the liquid fuel present in the cylinder. The fluorescing compounds in indolene, and mixtures of iso-octane with dopants of different boiling points (acetone and 3-pentanone) were used to trace the behavior of different volatility components. Images were taken of three different planes through the engine intersecting the intake valve region. A closed valve fuel injection strategy was used, as this is the strategy most commonly used in practice. Background subtraction and masking were both performed to reduce the effect of any spurious fluorescence.
Technical Paper

Investigation of the Dilution Process for Measurement of Particulate Matter from Spark-Ignition Engines

1998-10-19
982601
Measurements of particulate matter (PM) from spark ignition (SI) engine exhaust using dilution tunnels will become more prevalent as emission standards are tightened. Hence, a study of the dilution process was undertaken in order to understand how various dilution related parameters affect the accuracy with which PM sizes and concentrations can be determined. A SI and a compression ignition (CI) engine were separately used to examine parameters of the dilution process; the present work discusses the results in the context of SI exhaust dilution. A Scanning Mobility Particle Sizer (SMPS) was used to measure the size distribution, number density, and volume fraction of PM. Temperature measurements in the exhaust pipe and dilution tunnel reveal the degree of mixing between exhaust and dilution air, the effect of flowrate on heat transfer from undiluted and diluted exhaust to the environment, and the minimum permissible dilution ratio for a maximum sample temperature of 52°C.
Technical Paper

Reduction of Cooling Loss in Hydrogen Combustion by Direct Injection Stratified Charge

2003-10-27
2003-01-3094
Hydrogen can be readily used in spark-ignition engines as a clean alternative to fossil fuels. However, a larger burning velocity and a shorter quenching distance for hydrogen as compared with hydrocarbons bring a larger cooling loss from burning gas to the combustion-chamber wall. Because of the large cooling loss, the thermal efficiency of a hydrogen-fueled engine is sometimes lower than that of a conventionally fueled engine. Therefore, the reduction of the cooling loss is very important for improving the thermal efficiency in hydrogen-combustion engines. On the other hand, the direct-injection stratified charge can suppress knocking in spark-ignition engines at near stoichiometric overall mixture conditions. Because this is attributed to a leaner end gas, the stratification can lead to a lowered temperature of burning gas around the wall and a reduced cooling loss.
Technical Paper

Combination of Combustion Concept and Fuel Property for Ultra-Clean DI Diesel

2004-06-08
2004-01-1868
Experimental investigations were previously conducted with a direct-injection diesel engine with the aim of reducing exhaust emissions, especially nitrogen oxides (NOx) and particulate matter (PM). As a result of that work, a combustion concept, called Modulated Kinetics (MK) combustion, was developed that reduces NOx and smoke simultaneously through low-temperature combustion and premixed combustion to achieve a cleaner diesel engine. In subsequent work, it was found that applying a low compression ratio was effective in expanding the MK combustion region on the high-load side. The MK concept was then combined with an exhaust after-treatment system and applied to a test vehicle. The results indicated the attainment of ULEV emission levels, albeit in laboratory evaluations. In the present work, the combination of the MK combustion concept and certain fuel properties has been experimentally investigated with the aim of reducing exhaust emissions further.
Technical Paper

Fuel Effects on HCCI Operation in a Spark Assisted Direct Injection Gasoline Engine

2011-08-30
2011-01-1763
The fuel effects on HCCI operation in a spark assisted direct injection gasoline engine are assessed. The low load limit has been extended with a pilot fuel injection during the negative valve overlap (NVO) period. The fuel matrix consists of hydrocarbon fuels and various ethanol blends and a butanol blend, plus fuels with added ignition improvers. The hydrocarbon fuels and the butanol blend do not significantly alter the high or the low limits of operation. The HCCI operation appears to be controlled more by the thermal environment than by the fuel properties. For E85, the engine behavior depends on the extent that the heat release from the pilot injected fuel in the NVO period compensates for the evaporative cooling of the fuel.
Technical Paper

Effect of In-Cylinder Liquid Fuel Films on Engine-Out Unburned Hydrocarbon Emissions for an SI Engine

2012-09-10
2012-01-1712
An experimental study was performed in a firing SI engine at conditions representative of the warmup phase of operation in which liquid gasoline films were established at various locations in the combustion chamber and the resulting impact on hydrocarbon emissions was assessed. Unique about this study was that it combined, in a firing engine environment, direct visual observation of the liquid fuel films, measurements of the temperatures these films were subjected to, and the determination from gas analyzers of burned and unburned fuel quantities exiting the combustion chamber - all with cycle-level resolution or better. A means of deducing the exhaust hydrocarbon emissions that were due to the liquid fuel films in the combustion chamber was developed. An increase in exhaust hydrocarbon emissions was always observed with liquid fuel films present in the combustion chamber.
Technical Paper

Effect of Intake Valve Deposits and Gasoline Composition on S.I. Engine Performance

1992-10-01
922263
Valve deposits in gasoline engines increase with time, absorbing fuel during acceleration and releasing fuel during deceleration. Valve deposits insulate the heat release from the cylinder and this phenomenon is the cause of bad fuel vaporization. In this way, the deposits greatly affect the driveability and exhaust emissions. Using a 3.OL MPI(Multipoint Injection) engine, we measured the quantity of fuel that deposits at the intake port, and the throttle response (using a wall-flow meter made by Nissan Motor Co.1), 2) to study the deposits effect on driveability and exhaust emissions at a low temperature. The deposits were formed on the intake valve surface (about 8.0 on the CRC deposit rating scale) through 200 hours of laboratory engine stand operation. At low temperature, C9 and C10 hydrocarbons tend to stick to the intake port surface and intake valve as “wall-flow”; this is one cause of bad driveability.
Technical Paper

Effect of Catalyst Systems on Characteristics of Exhaust Hydrocarbon Species

1993-10-01
932718
The California Low-Emission Vehicle (LEV) standards mandate a reduction in non-methane organic gases (NMOG). With the aim of analyzing NMOG emissions, a comparison was made of the hydrocarbon species found in the exhaust gas when different types of catalyst systems and fuel specifications were used. NMOG emissions are usually measured by removing methane from the total hydrocarbon (THC) emissions and adding aldehyde and ketone emissions. The NMOG level found in this way is thus influenced by the rate of methane in THC emissions. Another important factor in the LEV standards is specific reactivity (SR), indicating the formation potential of ozone, which is one cause of photochemical smog. Specific reactivity is expressed by the amount of ozone generated per unit weight of NMOG emissions, and is affected by the respective proportion of hydrocarbon species in the total NMOG emissions.
Technical Paper

An Overview of Hydrocarbon Emissions Mechanisms in Spark-Ignition Engines

1993-10-01
932708
This paper provides an overview of spark-ignition engine unburned hydrocarbon emissions mechanisms, and then uses this framework to relate measured engine-out hydrocarbon emission levels to the processes within the engine from which they result. Typically, spark-ignition engine-out HC levels are 1.5 to 2 percent of the gasoline fuel flow into the engine; about half this amount is unburned fuel and half is partially reacted fuel components. The different mechanisms by which hydrocarbons in the gasoline escape burning during the normal engine combustion process are described and approximately quantified. The in-cylinder oxidation of these HC during the expansion and exhaust processes, the fraction which exit the cylinder, and the fraction oxidized in the exhaust port and manifold are also estimated.
Technical Paper

Effects of Exhaust Emission Control Devices and Fuel Composition on Speciated Emissions of S.I. Engines

1992-10-01
922180
Hydrocarbons and other organic materials emitted from S.I. engines cause ozone to form in the air. Since each species of organic materials has a different reactivity, exhaust components affect ozone formation in different ways. The effects of exhaust emission control devices and fuel properties on speciated emissions and ozone formation were examined by measuring speciated emissions with a gas chromatograph and a high-performance liquid chromatograph. In the case of gasoline fuels, catalyst systems with higher conversion rates such as close-coupled catalyst systems are effective in reducing alkenes and aromatics which show high reactivities to ozone formation. With deterioration of the catalyst, non-methane organic gas (NMOG) emission increases, but the specific reactivity of ozone formation tends to decrease because of the increase in alkane contents having low MIR values.
Technical Paper

Chemical Kinetic Modeling of the Oxidation of Unburned Hydrocarbons

1992-10-01
922235
The chemistry of unburned hydrocarbon oxidation in SI engine exhaust was modeled as a function of temperature and concentration of unburned gas for lean and rich mixtures. Detailed chemical kinetic mechanisms were used to model isothermal reactions of unburned fuel/air mixture in an environment of burned gases at atmospheric pressure. Simulations were performed using five pure fuels (methane, ethane, propane, n-butane and toluene) for which chemical kinetic mechanisms and steady state hydrocarbon (HC) emissions data were available. A correlation is seen between reaction rates and HC emissions for different fuels. Calculated relative amounts of intermediate oxidation products are shown to be consistent with experimental measurements.
Technical Paper

The Effects of Crevices on the Engine-Out Hydrocarbon Emissions in SI Engines

1994-03-01
940306
To understand the effects of crevices on the engine-out hydrocarbon emissions, a series of engine experiments was carried out with different piston crevice volumes and with simulated head gasket crevices. The engine-out HC level was found to be modestly sensitive to the piston crevice size in both the warmed-up and the cold engines, but more sensitive to the crevice volume in the head gasket region. A substantial decrease in HC in the cold-to-warm-up engine transition was observed and is attributed mostly to the change in port oxidation.
Technical Paper

A Comparison of Gas Chromatography-Based Methods of Analyzing Hydrocarbon Species

1994-03-01
940740
Gas chromatographic methods for analyzing hydrocarbon species in vehicle exhaust emissions were compared in terms of their collection efficiency, detection limit, repeatability and number of species detected using cylinder gas and tailpipe emission samples. The main methods compared were a Tenax cold trap injection (TCT) method (C5-C12 HCs) and a cold trap injection (CTI) method (C2-C4 HCs; C5-C12 HCs). Our own direct (DIR) method was used to confirm the collection efficiencies. Both methods yielded good results, but the CTI method showed low collection efficiency for some C2-C4 HCs. Measurement of individual species is needed with this method for accurate analysis of tailpipe emissions. Both the CTI method and the TCT method combined with the DIR method for determining C2-C4 HCs yielded nearly the same ozone specific reactivity values for the NMHC species analyzed.
Technical Paper

Auto-Oil Program Phase II Heavy Hydrocarbon Study: Fuel Species Oxidation Chemistry and Its Relationship to the Auto-Oil Data

1994-10-01
941970
The oxidation chemistry of paraffins, aromatics, olefins and MTBE were examined. Detailed chemical kinetics calculations were carried out for oxidation of these compounds in the engine cycle. The oxidation rates are very sensitive to temperature. At temperatures of over 1400 K (depending on the fuel), all the hydrocarbons are essentially oxidized for typical residence time in the engine. Based on the kinetics calculations, a threshold temperature is defined for the conversion of the fuel species to CO, CO2, H2O and partially oxidized products. The difference in the survival fraction between aromatics and non-aromatics is attributed to the higher threshold temperature of the aromatics.
X