Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development of a New Driving Posture Focused on Biomechanical Loads

2006-04-03
2006-01-1302
Fatigue resulting from long-term driving can be classified into physical and mental fatigue. Physical fatigue seems to be mainly caused by driving posture. The purpose of this study is to develop a new driving posture for reduction of causal factors of physical fatigue, that is, biomechanical loads caused by the posture. In this paper, driving posture was optimized by subjective optimizations of seat contours and biomechanical analysis considering necessary conditions for driving operations and forward view. The new driving posture was tested by subjective evaluations and pelvic movement measurements. It was found that the new posture reduced physical fatigue dramatically.
Technical Paper

Evaluations of Physical Fatigue during Long-term Driving with a New Driving Posture

2007-04-16
2007-01-0348
In a previous study, we developed and validated a new driving posture focused on biomechanical loads for physical fatigue reduction in static long-term sitting. In this study, the posture was evaluated in dynamic long-term driving condition by qualitative and quantitative measurements. The results showed physical fatigue of the new posture was halved in comparison with the one of the conventional posture in same car by subjective evaluations. Physiological indices had same tendency with subjective evaluations. From the results, we extracted seven physiological indices as good measures of physical fatigue while driving. Therefore, fatigue reduction of the new posture was qualitatively validated by physiological measurements.
Technical Paper

Virtual Occupant Model with Active Joint Torque Control for Muscular Reflex

2018-04-03
2018-01-1316
Riding comfort on the seat is one of the important factors for vehicle comfort. To analyze riding comfort, there were some models for predicting human vibrations in the past studies. On the other hand, it is strongly affected by human body motion caused by vehicle excitation during driving especially low frequency, but it is difficult to predict human motion due to an unclear mechanism of muscle reflex. The purpose of this study is to construct virtual riding comfort testing simulation based on virtual prototyping of the seat. In this study, a virtual occupant model that predicts occupant motion on the seat against external excitation including muscle reflex for maintaining sitting posture constructed. The whole body was modeled as 15 segments biomechanical model (1D) with wobbling mass. Each joint has passive elastic torque and damping torque springs. Human body surface was modeled as rigid shape.
X