Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Effect of Engine Design/Control Parameters and Emission Control Systems on Specific Reactivity of S.I. Engine Exhaust Gases

1995-02-01
950807
In 1994, the California Air Resources Board implemented low-emission vehicle (LEV) standards with the aim of improving urban air quality. One feature of the LEV standards is the increasingly tighter regulation of non-methane organic gases (NMOG), taking into account ozone formation, in addition to the existing control of non-methane hydrocarbons (NMHC). Hydrocarbons and other organic gases emitted by S.I. engines have been identified as a cause of atmospheric ozone formation. Since the reactivity of each chemical species in exhaust emissions differs, the effect on ozone formation varies depending on the composition of the exhaust gas components. This study examined the effect of different engine types, fuel atomization conditions, turbulence and emission control systems on emission species and specific reactivity. This was done using gas chromatographs and a high-performance liquid chromatograph to analyze exhaust emission species that affect ozone formation.
Technical Paper

Effects of Exhaust Emission Control Devices and Fuel Composition on Speciated Emissions of S.I. Engines

1992-10-01
922180
Hydrocarbons and other organic materials emitted from S.I. engines cause ozone to form in the air. Since each species of organic materials has a different reactivity, exhaust components affect ozone formation in different ways. The effects of exhaust emission control devices and fuel properties on speciated emissions and ozone formation were examined by measuring speciated emissions with a gas chromatograph and a high-performance liquid chromatograph. In the case of gasoline fuels, catalyst systems with higher conversion rates such as close-coupled catalyst systems are effective in reducing alkenes and aromatics which show high reactivities to ozone formation. With deterioration of the catalyst, non-methane organic gas (NMOG) emission increases, but the specific reactivity of ozone formation tends to decrease because of the increase in alkane contents having low MIR values.
Technical Paper

Performance and Exhaust Emissions of Nissan FFV NX Coupe

1992-02-01
920299
The FFVs under study operates on either M85 or M0 or any mixture of the two. Nissan has been actively conducting reseach and development on flexible fuel vehicles (FFVs) to explore the possibilities for long-range energy conservation and air quality improvement. The engine converted for use in these FFVs is a 1.6 liter, four-cylinder in-line powerplant, with dual overhead camshafts and four valves per cylinder. It employs the Nissan Variable valve timing Control System (NVCS). The fuel sensor for measuring the methanol concentration in the fuel has been improved both in terms of accuracy and durability. This paper describes the engine performance and exhaust emission levels (formaldehydes unburned methanol and HC emissions) obtained with both M85 and M0.
Technical Paper

Challenges of Widespread Marketplace Acceptance of Electric Vehicles -- Towards a Zero-Emission Mobility Society

2010-10-19
2010-01-2312
Curbing emissions of carbon dioxide (CO₂), which is believed by many scientists to be a major contributor to global warming, is one of the top priority issues that must be addressed by automobile manufacturers. Automakers have set their own strategies to improve fuel economy and to reduce CO₂ emissions. Some of them include integrated approaches, focusing on not only improvement of vehicle technology, but also human factors (eco-driving support for drivers) and social and transportation factors (traffic management by intelligent transportation systems [ITS]). Among them, electric vehicles (EVs) will be a key contributor to attaining the challenging goal of CO₂ reduction. Mass deployment of EVs is required to achieve a zero-emission society. To accomplish that, new advanced technologies, new business schemes, and new partnerships are required.
Technical Paper

Development of the Nissan Fuel Cell Vehicle

2000-04-02
2000-01-1584
Nissan has recently developed and begun driving tests of a fuel cell vehicle equipped with a methanol reformer that produces hydrogen through the use of a catalyst to induce chemical reactions between methanol and water. With this onboard fuel cell system, only methanol in the form of a liquid fuel needs to be supplied, making the system highly practical as an automotive powertrain for near-future application. The Nissan Fuel Cell Vehicle (FCV) adopts a high-efficiency neodymium magnet synchronous traction motor combined with lithium-ion batteries that enable the vehicle to achieve optimum electric power by switching between a fuel cell-powered driving mode and a battery-powered driving mode. This presentation will cover the current status of the FCV development program and driving test results.
X