Refine Your Search

Topic

Author

Search Results

Video

Technical Breakthroughs in Development of a Single Motor Full Hybrid System

2011-11-18
The energy crisis and rising gas price in the 2000s led to a growing popularity of hybrid vehicles. Hyundai-Kia Motors has been challenging to develop the new efficient eco-technology since introducing the mild type compact hybrid electric vehicle for domestic fleet in 2004 to meet the needs of the increasing automotive-related environmental issues. Now Hyundai has recently debuted a full HEV for global market, Sonata Hybrid. This system is cost effective solution and developed with the main purpose of improving fuel consumption and providing fun to drive. Presenter Seok Joon Kim, Hyundai Motor Company
Journal Article

The Effects of Charge Motion and Laminar Flame Speed on Late Robust Combustion in a Spark-Ignition Engine

2010-04-12
2010-01-0350
The effects of charge motion and laminar flame speeds on combustion and exhaust temperature have been studied by using an air jet in the intake flow to produce an adjustable swirl or tumble motion, and by replacing the nitrogen in the intake air by argon or CO₂, thereby increasing or decreasing the laminar flame speed. The objective is to examine the "Late Robust Combustion" concept: whether there are opportunities for producing a high exhaust temperature using retarded combustion to facilitate catalyst warm-up, while at the same time, keeping an acceptable cycle-to-cycle torque variation as measured by the coefficient of variation (COV) of the net indicated mean effective pressure (NIMEP). The operating condition of interest is at the fast idle period of a cold start with engine speed at 1400 RPM and NIMEP at 2.6 bar. A fast burn could be produced by appropriate charge motion. The combustion phasing is primarily a function of the spark timing.
Journal Article

Development of a Parallel Hybrid System for RWD Vehicles

2011-04-12
2011-01-0884
In December 2006, Nissan announced its Nissan Green Program 2010 (NGP 2010), a mid-term environmental action plan that includes initiatives to reduce vehicle emissions. In line with this plan, the company intends to introduce a new and original hybrid system in fiscal year 2010. Specifically, this system-called the “Infiniti Direct Response Hybrid”-is a one-motor, two-clutch parallel hybrid system that eliminates the need for a torque converter. It will be featured in the 2012 Infiniti M35 Hybrid and provides the following advantages. 1 Significant improvement in fuel economy even in Highway driving 2 Better response and a more direct feeling 3 Lightweight and low cost This one-motor, two-clutch system without torque converter possesses a simple but highly capable architecture that is new to the passenger vehicle segment.
Journal Article

An Assessment of the Rare Earth Element Content of Conventional and Electric Vehicles

2012-04-16
2012-01-1061
Rare earths are a group of elements whose availability has been of concern due to monopolistic supply conditions and environmentally unsustainable mining practices. To evaluate the risks of rare earths availability to automakers, a first step is to determine raw material content and value in vehicles. This task is challenging because rare earth elements are used in small quantities, in a large number of components, and by suppliers far upstream in the supply chain. For this work, data on rare earth content reported by vehicle parts suppliers was assessed to estimate the rare earth usage of a typical conventional gasoline engine midsize sedan and a full hybrid sedan. Parts were selected from a large set of reported parts to build a hypothetical typical mid-size sedan. Estimates of rare earth content for vehicles with alternative powertrain and battery technologies were made based on the available parts' data.
Technical Paper

Making the Case for a Next Generation Automotive Electrical System

1998-10-19
98C006
Introduction of an array of new electrical and electronic features into future vehicles is generating vehicle electrical power requirements that exceed the capabilities of today's 14 volt electrical systems. In the near term (5 to 10 years), the existing 14V system will be marginally capable of supporting the expected additional loads with escalating costs for the associated charging system. However, significant increases in vehicle functional content are expected as future requirements to meet longer-term (beyond 10 years) needs in the areas of emission control, fuel economy, safety, and passenger comfort. A higher voltage electrical system will be required to meet these future requirements. This paper explores the functional needs that will mandate a higher voltage system and the benefits derivable from its implementation.
Technical Paper

Interactive Information Delivery Navigation System

1998-10-19
98C029
In the past few years, car navigation and cellular phone system are rapidly increased in Japan and vehicle information and communication system (VICS), the public traffic information service started in 1996, accelerates realization of ITS world. This rapid movement causes drivers to want more information on not only traffic jam but also other versatile items like parking availability, weather report and the latest news, etc. via cellular phone network. This paper describes the on-demand information service with the interactive human interface by operators and the development of the information center and the in-vehicle system to realize it.
Technical Paper

Research and Development Work on High-performance Lithium-ion Batteries for EV Application

2008-04-14
2008-01-1332
From the beginning of the 1990s, we have been vigorously investigating a high-performance power source system for application to environmental vehicles, focusing our research and development efforts specifically on lithium-ion batteries. In order to adapt a battery system to the requirements of the target vehicle, battery performance must be predicted and designed more accurately. In the case of hybrid electric vehicles, for example, battery power must be reliably assured. Improving battery power requires quantitative analytical methods as fundamental techniques for understanding the basic processes that take place in a battery. From this perspective, we began constructing a battery simulation model from scratch in the middle of the 1990s concurrently with our battery R&D activities. The model simulates electrode reactions and charge transport and has been used in investigating the influence of these factors on battery performance.
Technical Paper

Research on Large Capacity, High Power Lithium-ion Batteries

2009-04-20
2009-01-1389
Aiming for an environmental vehicle, since the 1990s we have narrowed our focus to the development of an exclusive use lithium-ion battery, and we have strongly advanced our examinations into high-performance power supply systems. In order to adapt a battery to meet vehicle requirements, it is necessary to more accurately predict battery performance, and have the ability to design it. For example, in the applicability to HEVs(Hybrid Electric Vehicles), ensuring battery power with certainty is required, but in order to improve battery power, the basic process that occurs inside the battery was restrained, so it is possible that the quantitative analytical approach is the necessary fundamental technology.
Technical Paper

Crash Safety of Lithium-Ion Batteries Towards Development of a Computational Model

2010-04-12
2010-01-1078
Battery packs for Hybrids, Plug-in Hybrids, and Electric Vehicles are assembled from a system of modules (sheets) with a tight sheet metal casing around them. Each module consists of an array of individual cells which vary in the composition of electrodes and separator from one manufacturer to another. In this paper a general procedure is outlined on the development of a constitutive and computational model of a cylindrical cell. Particular emphasis is placed on correct prediction of initiation and propagation of a tearing fracture of the steel can. The computational model correctly predicts rupture of the steel can which could release aggressive chemicals, fumes, or spread the ignited fire to the neighboring cells. The initiation site of skin fracture depends on many factors such as the ductility of the casing material, constitutive behavior of the system of electrodes, and type of loading.
Technical Paper

Challenges of Widespread Marketplace Acceptance of Electric Vehicles -- Towards a Zero-Emission Mobility Society

2010-10-19
2010-01-2312
Curbing emissions of carbon dioxide (CO₂), which is believed by many scientists to be a major contributor to global warming, is one of the top priority issues that must be addressed by automobile manufacturers. Automakers have set their own strategies to improve fuel economy and to reduce CO₂ emissions. Some of them include integrated approaches, focusing on not only improvement of vehicle technology, but also human factors (eco-driving support for drivers) and social and transportation factors (traffic management by intelligent transportation systems [ITS]). Among them, electric vehicles (EVs) will be a key contributor to attaining the challenging goal of CO₂ reduction. Mass deployment of EVs is required to achieve a zero-emission society. To accomplish that, new advanced technologies, new business schemes, and new partnerships are required.
Technical Paper

Engine Application of a Battery Voltage-Driven DI Fuel Injection System

2001-03-05
2001-01-0986
Every fuel injection system for DI gasoline engines has a DC-DC converter to provide high, stabile voltage for opening the injector valve more quickly. A current control circuit for holding the valve open is also needed, as well as a large-capacity capacitor for pilot injection. Since these components occupy considerable space, an injector drive unit separate from the ECU must be used. Thus, there has been a need for a fuel injection system that can inject a small volume of fuel without requiring high voltage. To meet that need, we have developed a dual coil injector and an opening coil current control system. An investigation was also made of all the factors related to the dynamic range of the injector, including static flow rate, fuel pressure, battery voltage and harness resistance. Both efforts have led to the adoption of a battery voltage-driven fuel injector.
Technical Paper

Usability Evaluation of Integrated Switch System

2002-03-04
2002-01-0085
This paper describes an integrated switch system by which the audio control system, air-conditioner control system and navigation control system can be operated with a smaller number of switches. This system resolves several issues resulting from the incorporation of information technology into vehicles, including the increased visual load due to the greater amount of information presented and the poorer operability resulting from increased functionality. A usability evaluation was conducted and the results indicated that the integrated switch system can reduce visual load.
Technical Paper

Development of an On-Board Class A Local Area Network System

1992-02-01
920229
The growing number of electronic components used in automobiles lately has given rise to problems concerning the increasing number, size and weight of the wiring harnesses. As one approach to resolving these problems, the authors proposed a multiplex method based on the direction of signal flow in 1988 (SAE880589). However, the need to reduce the number of wiring harnesses circuits further made it necessary to develop a more sophisticated system. This paper presents an on-board Class A local area network (LAN) system that overcomes the problems in conventional multiplexing systems through the use of a master-slave configuration, a polling selection method and a system that integrates of electronic circuits with switch modules.
Technical Paper

Development of an Electric Concept Vehicle with a Super Quick Charging System

1992-02-01
920442
Recent environmental concerns such as atmospheric pollution and energy conservation have intensified the need to develop pollution-free, energy-efficient vehicles. One such solution is the electric automobile which draws its power from rechargeable batteries. There are few vehicles on the road today because present batteries can store very little energy compared with that of a tank of gasoline. To obtain adequate range, this concept vehicle adopts a new battery which can be recharged to 40% of capacity in six minutes. This super quick charging system makes it possible to recharge the batteries at an electric recharging station just as gasoline-powered vehicles are refilled at service stations. The electric concept vehicle also has improved aerodynamics, reduced rolling resistance and a lighter curb weight, which help to assure adequate range.
Technical Paper

High Power Density Motor and Inverter for RWD Hybrid Vehicles

2011-04-12
2011-01-0351
This paper describes the motor and inverter of Nissan's newly developed parallel hybrid system for rear-wheel-drive hybrid vehicles. The new system incorporates a high-power lithium-ion battery and a one-motor-two-clutch powertrain to achieve both highly responsive acceleration and better fuel economy. As the main components of the hybrid system, both the motor and the inverter have been developed and are manufactured in house to attain high power density for providing responsive acceleration, a quiet EV drive mode and improved fuel economy. Because the motor is located between the engine and the transmission, it had to be shortened to stay within the length allowed for the powertrain. The rotary position sensor and clutch actuator are located inside the rotor to meet the size requirement. High-density winding of square-shaped wire and a small power distribution busbar also contribute to the compact configuration.
Technical Paper

Investigating the Effect of Intake Manifold Size on the Transient Response of Single Cylinder Turbocharged Engines

2017-09-04
2017-24-0170
This paper evaluates the lag time in a turbocharged single cylinder engine in order to determine its viability in transient applications. The overall goal of this research is to increase the power output, reduce the fuel economy, and improve emissions of single cylinder engines through turbocharging. Due to the timing mismatch between the exhaust stroke, when the turbocharger is powered, and the intake stroke, when the engine intakes air, turbocharging is not conventionally used in commercial single cylinder engines. Our previous work has shown that it is possible to turbocharge a four stroke, single cylinder, internal combustion engine using an air capacitor, a large volume intake manifold in between the turbocharger compressor and engine intake. The air capacitor stores compressed air from the turbocharger during the exhaust stroke and delivers it during the intake stroke.
Technical Paper

Investigations of Compatibility of ETBE Gasoline with Current Gasoline Vehicles

2006-10-16
2006-01-3381
Clarifying the impact of ETBE 8% blended fuel on current Japanese gasoline vehicles, under the Japan Clean Air Program II (JCAPII) we conducted exhaust emission tests, evaporative emission tests, durability tests on the exhaust after-treatment system, cold starting tests, and material immersion tests. ETBE 17% blended fuel was also investigated as a reference. The regulated exhaust emissions (CO, HC, and NOx) didn't increase with any increase of ETBE content in the fuel. In durability tests, no noticeable increase of exhaust emission after 40,000km was observed. In evaporative emissions tests, HSL (Hot Soak Loss) and DBL (Diurnal Breathing Loss) didn't increase. In cold starting tests, duration of cranking using ETBE 8% fuel was similar to that of ETBE 0%. In the material immersion tests, no influence of ETBE on these material properties was observed.
Technical Paper

An Overview of Hydrocarbon Emissions Mechanisms in Spark-Ignition Engines

1993-10-01
932708
This paper provides an overview of spark-ignition engine unburned hydrocarbon emissions mechanisms, and then uses this framework to relate measured engine-out hydrocarbon emission levels to the processes within the engine from which they result. Typically, spark-ignition engine-out HC levels are 1.5 to 2 percent of the gasoline fuel flow into the engine; about half this amount is unburned fuel and half is partially reacted fuel components. The different mechanisms by which hydrocarbons in the gasoline escape burning during the normal engine combustion process are described and approximately quantified. The in-cylinder oxidation of these HC during the expansion and exhaust processes, the fraction which exit the cylinder, and the fraction oxidized in the exhaust port and manifold are also estimated.
Technical Paper

Research on a Braking System for Reducing Collision Speed

2003-03-03
2003-01-0251
An investigation was made of the relationship between the driving speed at the time of impact and the injury levels suffered in accidents. The results showed that a 5 km/h or more reduction in collision speed tends to mitigate injury severity. Using sensors and brake actuators already in practical use, we have started to research a braking system aimed at reducing the collision speed by at least 5 km/h in rear-end collisions. The system estimates the risk of a collision with the vehicle ahead. If it judges there is a very high possibility of a collision, it applies the brakes.
Technical Paper

A Study of a Telematics Communication Method Involving Switching Signals to Voice and Data Lines

2003-03-03
2003-01-0132
This paper proposes a new voice and data wireless communication method for telematics services. Data-voice (DV) modems have conventionally been used for simultaneous transmission of voice and data. With this method, however, one line is split between the data part and voice part. Lost data are retransmitted, but the voice signal is not resent because voice communication requires a real-time characteristic. The new voice and data wireless communication method proposed here switches voice to a voice line and data to a data line.
X