Refine Your Search

Topic

Author

Search Results

Technical Paper

Effects of Gas Flow and Mixture Properties on Engine-Out HC Emissions

1996-10-01
961952
The geometry and area of the notch in the swirl control valve installed in the intake port were varied to analyze the effects on HC emissions. A swirl control valve functions to promote the formation of a homogeneous mixture, enabling the amount of liquid fuel supplied to the cylinder to be reduced. For this reason, it is difficult to obtain an added effect through the combined use of a swirl control valve and an auxiliary-air type of injector for assisting fuel atomization. Tumble (vertical swirl) flow fields are effective in shortening the combustion period. This results in a higher exhaust gas temperature at an equivalent level of combustion stability. It was thought that swirl flow fields produce residual gas flow in the cylinder after the completion of the main combustion period. It is surmised that the residual gas flow functions to diffuse and promote after-burning of the unburned HC layer.
Technical Paper

Effects of Swirl/Tumble Motion on In-Cylinder Mixture Formation in a Lean-Burn Engine

1996-10-01
961994
Flow measurement by laser Doppler velocimetry and visualization of in-cylinder fuel vapor motion by laser induced fluorescence were performed for various types of intake systems that generated several different combinations of swirl and tumble ratios. The measured results indicate that certain swirl and tumble ratios are needed to achieve charge stratification in the cylinder. Performance tests were also carried out to determine the combustion characteristics of each intake system. Then, the features of combustion when the charge stratification was realized was analyzed.
Technical Paper

Liquid Fuel Transport Mechanisms into the Cylinder of a Firing Port-Injected SI Engine During Start Up

1997-02-24
970865
The occurrence of liquid fuel in the cylinder of automotive internal combustion engines is believed to be an important source of exhaust hydrocarbon (HC) emissions, especially during the warm-up process following an engine start up. In this study a Phase Doppler Particle Analyzer (PDPA) has been used in a transparent flow visualization combustion engine in order to investigate the phenomena which govern the transport of liquid fuel into the cylinder during a simulated engine start up process. Using indolene fuel, the engine was started up from room temperature and run for 90 sec on each start up simulation. The size and velocity of the liquid fuel droplets entering the cylinder were measured as a function of time and crank angle position during these start up processes. The square-piston transparent engine used gave full optical access to the cylinder head region, so that these droplet characteristics could be measured in the immediate vicinity of the intake valve.
Technical Paper

Increased Power Density via Variable Compression/Displacement And Turbocharging Using The Alvar-Cycle Engine

1998-02-23
981027
This paper presents the analysis and design of a variable compression-ratio and displacement engine concept - the Alvar Cycle using a four-stroke engine-performance simulation. The Alvar-Cycle engine uses secondary pistons which reciprocate in auxiliary chambers housed in the cylinder head, at adjustable phase-angle differences from the primary pistons. The phase difference provides both the variable total engine displacement and compression ratio. Results indicate that the Alvar engine can operate at higher power density via a combination of higher intake boost and lower compression ratio to avoid knock at high loads, and capture the better thermal efficiency at higher compression ratios at part loads.
Technical Paper

Mixture Formation and Combustion Performance in a New Direct-Injection SI V-6 Engine

1998-05-04
981435
One advantage of a direct-injection S.I. engine is lower fuel consumption due to the use of lean stratified charge combustion. Another advantage is greater power output resulting from evaporation of the fuel in the cylinder. A critical factor in making the most of these advantages is to achieve optimum mixture formation for both stratified and homogeneous charge combustion. To achieve the optimum mixture, the new direct-injection S.I. V-6 engine adopts a piston with a shallow bowl, a valve that changes in-cylinder air motion between swirl and tumble by opening and closing one side of separated air intake port, an air intake port that has optimized inward and port angle to induces swirl in the piston bowl, and a CASTING NET injector that injects the hollow cone spray in a deflected pattern toward the spark plug.
Technical Paper

Liquid Fuel Visualization Using Laser-Induced Fluoresence During Cold Start

1998-10-19
982466
The presence of liquid fuel inside the engine cylinder is believed to be a strong contributor to the high levels of hydrocarbon emissions from spark ignition (SI) engines during the warm-up period. Quantifying and determining the fate of the liquid fuel that enters the cylinder is the first step in understanding the process of emissions formation. This work uses planar laser induced fluorescence (PLIF) to visualize the liquid fuel present in the cylinder. The fluorescing compounds in indolene, and mixtures of iso-octane with dopants of different boiling points (acetone and 3-pentanone) were used to trace the behavior of different volatility components. Images were taken of three different planes through the engine intersecting the intake valve region. A closed valve fuel injection strategy was used, as this is the strategy most commonly used in practice. Background subtraction and masking were both performed to reduce the effect of any spurious fluorescence.
Technical Paper

Analysis of Fuel Behavior in the Spark-Ignition Engine Start-Up Process

1995-02-01
950678
An analysis method for characterizing fuel behavior during spark-ignition engine starting has been developed and applied to several sets of start-up data. The data sets were acquired from modern production vehicles during room temperature engine start-up. Two different engines, two control schemes, and two engine temperatures (cold and hot) were investigated. A cycle-by-cycle mass balance for the fuel was used to compare the amount of fuel injected with the amount burned or exhausted as unburned hydrocarbons. The difference was measured as “fuel unaccounted for”. The calculation for the amount of fuel burned used an energy release analysis of the cylinder pressure data. The results include an overview of starting behavior and a fuel accounting for each data set Overall, starting occurred quickly with combustion quality, manifold pressure, and engine speed beginning to stabilize by the seventh cycle, on average.
Technical Paper

Development of a New-Generation Lightweight 3-Liter V6 Nissan Engine

1994-03-01
940991
This paper presents a new-generation, lightweight, 3-liter V6 engine that has been developed for use in the next Nissan Maxima. The distinctive features of this new engine, VQ30DE, is its compact, lightweight design and excellent fuel economy. The basic construction of the engine is characterized by its 60-degree V6 configuration, chain-driven DOHC and high-pressure die cast aluminum cylinder block. A two-way cooling system was adopted with the aim of shortening the warm-up time of the cylinder liners. The new engine has been designed to comply with the tougher emission standards, the OBD-II requirements and California's new evaporative emission standard.
Technical Paper

Application of Predictive Noise and Vibration Analysis to the Development of a New-Generation Lightweight 3-Liter V6 Nissan Engine

1994-03-01
940993
The target performance of a new engine has to be obtained under various restrictions such as cost and weihgt. It is particularly important to predict the engine noise and vibration performance at an early stage. For this purpose the analytical methods have been developed, which include the prediction of the absolute noise and vibration level by inputting a given exciting force into the model. These methods were applied to the development of the new engine. As a result, the characteristics of an aluminum cylinder block were used effectively to achieve a new lightweight V6 engine with low noise and vibration levels.
Technical Paper

Extent of Oxidation of Hydrocarbons Desorbing from the Lubricant Oil Layer in Spark-ignition Engines

1996-02-01
960069
The extent of oxidation of hydrocarbons desorbing from the oil layer has been measured directly in a hydrogen-fueled, spark-ignited engine in which the lubricant oil was doped with a single component hydrocarbon. The amount of hydrocarbon desorbed and oxidized could be measured simultaneously as the dopant was only source of carbon-containing species. The fraction oxidized was strongly dependent on engine load, hydrogen fuel-air ratio and dopant chemical reactivity, but only modestly dependent on spark timing and nitrogen dilution levels below 20 percent. Fast FID measurements at the cylinder exit showed that the surviving hydrocarbons emerge late in the exhaust stroke.
Technical Paper

A Study of Cycle-to-Cycle Variations in SI Engines Using a Modified Quasi-Dimensional Model

1996-05-01
961187
This paper describes the use of a modified quasi-dimensional spark-ignition engine simulation code to predict the extent of cycle-to-cycle variations in combustion. The modifications primarily relate to the combustion model and include the following: 1. A flame kernel model was developed and implemented to avoid choosing the initial flame size and temperature arbitrarily. 2. Instead of the usual assumption of the flame being spherical, ellipsoidal flame shapes are permitted in the model when the gas velocity in the vicinity of the spark plug during kernel development is high. Changes in flame shape influence the flame front area and the interaction of the enflamed volume with the combustion chamber walls. 3. The flame center shifts due to convection by the gas flow in the cylinder. This influences the flame front area through the interaction between the enflamed volume and the combustion chamber walls. 4. Turbulence intensity is not uniform in cylinder, and varies cycle-to-cycle.
Technical Paper

A Comparison of Gas Chromatography-Based Methods of Analyzing Hydrocarbon Species

1994-03-01
940740
Gas chromatographic methods for analyzing hydrocarbon species in vehicle exhaust emissions were compared in terms of their collection efficiency, detection limit, repeatability and number of species detected using cylinder gas and tailpipe emission samples. The main methods compared were a Tenax cold trap injection (TCT) method (C5-C12 HCs) and a cold trap injection (CTI) method (C2-C4 HCs; C5-C12 HCs). Our own direct (DIR) method was used to confirm the collection efficiencies. Both methods yielded good results, but the CTI method showed low collection efficiency for some C2-C4 HCs. Measurement of individual species is needed with this method for accurate analysis of tailpipe emissions. Both the CTI method and the TCT method combined with the DIR method for determining C2-C4 HCs yielded nearly the same ozone specific reactivity values for the NMHC species analyzed.
Technical Paper

Liquid Gasoline Behavior in the Engine Cylinder of a SI Engine

1994-10-01
941872
The liquid fuel entry into the cylinder and its subsequent behavior through the combustion cycle were observed by a high speed CCD camera in a transparent engine. The videos were taken with the engine firing under cold conditions in a simulated start-up process, at 1,000 RPM and intake manifold pressure of 0.5 bar. The variables examined were the injector geometry, injector type (normal and air-assisted), injection timing (open- and closed-valve injection), and injected air-to-fuel ratios. The visualization results show several important and unexpected features of the in-cylinder fuel behavior: 1) strip-atomization of the fuel film by the intake flow; 2) squeezing of fuel film between the intake valve and valve seat at valve closing to form large droplets; 3)deposition of liquid fuel as films distributed on the intake valve and head region. Some of the liquid fuel survives combustion into the next cycle.
Technical Paper

Novel Experiment on In-Cylinder Desorption of Fuel from the Oil Layer

1994-10-01
941963
A technique has been developed to measure the desorption and subsequent oxidation of fuel in the oil layer by spiking the oil with liquid fuel and firing the engine on gaseous fuel or motoring with air. Experiments suggest that fuel desorption is not diffusion limited above 50 °C and indicated that approximately two to four percent of the cylinder oil layer is fresh oil from the sump. The increase in hydrocarbon emissions is of the order of 100 ppmC1 per 1% liquid fuel introduced into the fresh oil in a methane fired engine at mid-speed and light load conditions. Calculations indicate that fuel desorbing from oil is much more likely to produce hydrocarbon emissions than fuel emerging from crevices.
Technical Paper

Effect of Engine Operating Parameters on Hydrocarbon Oxidation in the Exhaust Port and Runner of a Spark-Ignited Engine

1995-02-01
950159
The effect of engine operating parameters (speed, spark timing, and fuel-air equivalence ratio [Φ]) on hydrocarbon (HC) oxidation within the cylinder and exhaust system is examined using propane or isooctane fuel. Quench gas (CO2) is introduced at two locations in the exhaust system (exhaust valve or port exit) to stop the oxidation process. Increasing the speed from 1500 to 2500 RPM at MBT spark timing decreases the total, cylinder-exit HC emissions by ∼50% while oxidation in the exhaust system remains at 40% for both fuels. For propane fuel at 1500 rpm, increasing Φ from 0.9 (fuel lean) to 1.1 (fuel rich) reduces oxidation in the exhaust system from 42% to 26%; at 2500 RPM, exhaust system oxidation decreases from 40% to approximately 0% for Φ = 0.9 and 1.1, respectively. Retarded spark increases oxidation in the cylinder and exhaust system for both fuels. Decreases in total HC emissions are accompanied by increased olefinic content and atmospheric reactivity.
Technical Paper

Engine Experiments on the Effects of Design and Operational Parameters on Piston Secondary Motion and Piston Slap

1994-03-01
940695
Experiments were done to quantify the dynamic motion of the piston and oil-film during piston impact on the cylinder bore, commonly known as “piston slap.” Parameters measured include engine block vibration, piston-skirt to liner separation, oil-film thickness between the piston and liner, and other engine operating conditions. Experimental parametric studies were performed covering the following: engine operating parameters - spark timing, liner temperature, oil-film thickness, oil type, and engine speed; and engine design parameters - piston-skirt surface waviness, piston-skirt/cylinder-liner clearance, and wrist-pin offset. Two dynamic modes of piston-motion-induced vibration were observed, and effects of changes in engine operating and design parameters were investigated for both types of slap. It was evident that engine design parameters have stronger effects on piston slap intensity, with piston-skirt/liner clearance and wrist-pin offset being the dominant parameters.
Technical Paper

Combustion Chamber Deposit Effects on Hydrocarbon Emissions from a Spark-Ignition Engine

1997-10-01
972887
A dynamometer-mounted four-cylinder Saturn engine was used to accumulate combustion chamber deposits (CCD), using an additized fuel. During each deposit accumulation test, the HC emissions were continuously measured. The deposit thickness at the center of the piston was measured at the beginning of each day. After the 50 and 35-hour tests, HC emissions were measured with isooctane, benzene, toluene, and xylene, with the deposited engine, and again after the deposits had been cleaned from the engine. The HC emissions showed a rapid rise in the first 10 to 15 hours and stabilization after about 25 hours of deposit accumulation. The HC increase due to CCD accumulation accounted for 10 to 20% of the total engine-out HC emissions from the deposit build-up fuel and 10 to 30% from benzene, isooctane, toluene, and xylene, making CCDs a significant HC emissions source from this engine. The HC emissions stabilized long before the deposit thickness.
Technical Paper

Research on Crankshaft System Behavior Based on Coupled Crankshaft-Block Analysis

1997-10-01
972922
Achieving a multi-cylinder engine with excellent noise/vibration character sties and low friction at the main bearings requires an optimal design not only for the crankshaft construction but also for the bearing support system of the cylinder block. To accomplish that, it is necessary to understand crankshaft system behavior and the bearing load distribution for each of the main bearings. Crankshaft system behavior has traditionally been evaluated experimentally because of the difficulty in performing calculations to predict resonance behavior over the entire engine speed range. A coupled crankshaft-block analysis method has been developed to calculate crankshaft system behavior by treating vibration and lubrication in a systematic manner. This method has the feature that the coupled behavior of the crankshaft and the cylinder block is analyzed by means of main bearing lubrication calculations. This paper presents the results obtained with this method.
Technical Paper

Flame Shape Determination Using an Optical-Fiber Spark Plug and a Head-Gasket Ionization Probe

1994-10-01
941987
A method for determining the flame contour based on the flame arrival time at the fiber optic (FO) spark plug and at the head gasket ionization probe (IP) locations has been developed. The experimental data were generated in a single-cylinder Ricardo Hydra spark-ignition engine. The head gasket IP, constructed from a double-sided copper-clad circuit board, detects the flame arrival time at eight equally spaced locations at the top of the cylinder liner. Three other IP's were also installed in the cylinder head to provide additional intermediate data on flame location and arrival time. The FO spark plug consists of a standard spark plug with eight symmetrically spaced optical fibers located in the ground casing of the plug. The cylinder pressure was recorded simultaneously with the eleven IP signals and the eight optical signals using a high-speed PC-based data acquisition system.
Technical Paper

Development of a New Compound Fuel and Fluorescent Tracer Combination for Use with Laser Induced Fluorescence

1995-10-01
952465
Laser induced fluorescence (LIF) is a useful method for visualizing the distribution of the air-fuel ratio in the combustion chamber. The way this method is applied mainly depends on the fluorescent tracer used, such as biacetyl, toluene, various aldehydes, fluoranthene or diethylketone, among others. Gasoline strongly absorbs light in the UV region, for example, at the 248-nm wavelength of broadband KrF excimer laser radiation. Therefore, when using this type of laser, iso-octane is employed as the fuel because it is transparent to 248-nm UV light. However, since the distillation curves of iso-octane and gasoline are different, it can be expected that their vaporization characteristics in the intake port and cylinder would also be different. The aim of this study was to find a better fuel for use with LIF at a broadband wavelength of 248 nm. Three tasks were undertaken in this study.
X