Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of a New 4WD System: All-Mode 4WD

1997-02-24
970684
This paper presents a new electronic torque split four-wheel-drive system called All-Mode 4WD, which has been adopted in the latest generation of sport-utility vehicles (SUVs). As a torque split system designed specifically for SUV use, it provides stable driving performance matching the driver's intentions under all sorts of operating conditions, from a completely natural on-road driving feel to powerful traction for off-road travel.
Technical Paper

Development of a Multi-Link Beam Rear Suspension for Front-Wheel-Drive Cars

1995-02-01
950585
Research into stability at high speed shows that rear suspension characteristics play an important role in vehicle control and stability. In order to improve the cornering limit steering performance and traction of front-wheel-drive vehicles, where the front wheels bear a large proportion of the load and transmit the driving force, and to maintain vehicle stability when decelerating while cornering, rear suspension characteristics are needed that will fully draw out the cornering force capacity of the rear tires. This requirement continues to grow every year, along with demands for higher levels of comfort in passenger cars, including improved ride quality and quietness. It was against this background that the new multi-link beam rear suspension, which is installed in the new Maxima and Sentra models, was developed. This paper describes the aims, construction, characteristics and effects of this new suspension, with focus on vehicle control and stability.
Technical Paper

Effect of Composition, Particle Size, and Heat Treatment on the Mechanical Properties of Al-4.5 wt.% Cu Based Alumina Particulate Reinforced Composites

1998-02-23
980700
The quest for higher efficiency and performance of automotive vehicles requires application of materials with high strength, stiffness and lower weight in their construction. Particulate-reinforced aluminum-matrix composites are cost-competitive materials, which can meet these requirements. MMCC, Inc. has been optimizing particulate-reinforced alloy systems and developing the Advanced Pressure Infiltration Casting (APIC™) process for the manufacture of components from these materials. This paper discusses the results of a recent study in which composites reinforced with 55 vol.% alumina were cast using two sizes of alumina particulate and eight different matrix alloys based on Al-4.5 wt.% Cu with varying amounts of silicon and magnesium. Optimum heat treatments for each alloy were determined utilizing microhardness studies. The tensile strength and fracture toughness were evaluated as a function of alloy chemistry, particulate size, and heat treatment.
Technical Paper

A Study of the Mechanism Causing High-Speed Brake Judder

1998-02-23
980594
Brake judder caused by uneven heat spots on brake disc surfaces is a major issue in improving vehicle quality. This is especially true for rumble that occurs during high-speed braking. In order to determine the excitation mechanism of brake judder, it is necessary to measure the dynamic brake disc geometry and temperature distribution during actual operation on the road. A noncontact sensor system, suitable for a high temperature environment, was used to monitor these parameters, making it possible to visualize heat spots transiently. The data obtained revealed the influence of pad and disc parameters on heat spot formation.
Technical Paper

New Electonically Controlled Torque Split 4WD System for Improving Cornering Performance

1990-02-01
900556
A new 4WD systen called the “ATTESA E-TS” has been developed based on a new approach to traction control. The E-TS system employs electronic control to achieve an optimm torque split ratio between the front and rear axles. This system is designed not only to deliver high tractive performance, but also to improve cornering performance under various road-surface friction coefficients and engine outputs. It consists of a transfer unit containing a multiplate clutch, a hydraulic unit, and a control system which is integrated with an anti-lock brake system and employs a wheel speed sensor at each wheel as well as a lateral acceleration sensor.
Technical Paper

Development and Analysis of New Traction Control System with Rear Viscous LSD

1991-02-01
910700
Traction control systems (TCSs) serve to control brake pressure and engine torque, thereby reducing driving wheel spin for improved stability and handling. Systems are divided into two basic types by the brake control configuration. One type is a one-channel left-right common control system and the other is a two-channel individual control system. This paper presents an analysis of these two types of TCS configurations in terms of handling, acceleration, stability, yaw convergence and other performance parameters. The systems are compared with and without a limited-slip differential (LSD) under various road conditions, based on experimental data and computer simulations. As a result of this work, certain Nissan models are now equipped with a new Nissan Traction Control System with a rear viscous LSD (Nissan V-TCS), which provides both the advantages of a rear viscous LSD in a small slip region and a two-channel TCS in a large slip region.
Technical Paper

Development of the Full Active Suspension by Nissan

1990-09-01
901747
Nissan has developed a hydraulic active suspension which uses an oil pump as its power source to produce hydraulic pressure that negates external forces acting on the vehicle. As a result, the suspension system is able to control vehicle movement freely and continuously. This control capability makes it possible to provide higher levels of ride comfort and vehicle dynamics than are obtainable with conventional suspension systems. The major features of the hydraulic system include: (1) active bouncing control using a skyhook damper, (2) a frequency-sensitive damping mechanism and (3) active control over roll, dive and squat.
Technical Paper

Development of a Standalone Navigation and Audio-Visual System (Multi-AV System)

1990-02-01
900473
This paper describes the Multi-AV System featured in the 1989 model Nissan Cedric, Gloria, and CIMA. It is composed of a navigation system and an audio-visual system. The former system tracks the location of the vehicle and shows it on a CRT map display. This standalone navigation system has been achieved using a map-matching technique along with a terrestrial magnetic field sensor and wheel speed sensors installed at the wheels. Information on hotels, golf courses, Nissan dealers and other items can be obtained. A CD-ROM is employed as the memory. The audio-visual system consists of a radio, cassette deck, CD player, and TV. The Multi-AV System combines the practicality of a navigation function with the entertainment capabilities of an audio-visual system to satisfy diverse needs.
Technical Paper

Development of a High Strength Valve Spring

1989-02-01
890220
Development of a high strength valve spring for automotive engines achieves higher power output and better fuel economy. New material which consists of finely structure and subjected to advanced shot peening, has been developed. Stress analysis of the valve spring moving edge, using the finite element method, has been done for effective application. The merits of this new spring have been confirmed by engine experiments.
Technical Paper

Development of Electronically Controlled Air Suspension System

1988-11-01
881770
This paper discusses the key components of a new electronically controlled air suspension system developed by Nissan Motor Co. The system utilizes a very soft spring rate, and effectively controls the spring rate and the damping coefficient to achieve high suspension performance. As a result, this system improves both riding comfort and vehicle controllability, two factors that normally conflict with each other. The soft spring rate delivers a comfortable ride, and accurate controllability prevents the vehicle's attitude from changing significantly during roiling, braking and accelerating.
Technical Paper

Optimal Forming of Aluminum 2008-T4 Conical Cups Using Force Trajectory Control

1993-03-01
930286
In this paper we investigate the optimal forming of conical cups of AL 2008-T4 through the use of real-time process control. We consider a flat, frictional binder the force of which can be determined precisely through closed-loop control. Initially the force is held constant throughout the forming of the cup, and various levels of force are tested experimentally and with numerical simulation. Excellent agreement between experiment and simulation is observed. The effects of binder force on cup shape, thickness distribution, failure mode and cup failure height are investigated, and an “optimal” constant binder force is determined. For this optimal case, the corresponding punch force is recorded as a function of punch displacement and is used in subsequent closed-loop control experiments. In addition to the constant force test, a trial variable binder force test was performed to extend the failure height beyond that obtained using the “optimal” constant force level.
Technical Paper

Development of the N-Type Runflat Tire and Its Evaluation in Vehicle Dynamics

1979-02-01
790668
Judging from viewpoint of automotive safety and more space by eliminating a spare tire, the development of the run-flat tires is important. Many problems relating to weight increase and usability had to be solved in the course of the development of such tires. The “ N ” type run-flat tire, described in this paper, has a simple structure with reinforced side walls and additional beads to fit the rim flanges. Though this tire system brought about a small amount of weight increase, it needs no special part, therefore the conventional road wheels, air valves and tire changers may be used. We have tested and evaluated this tire system equipped with passenger cars as well as on the test machines. Especially vehicle dynamics such as steering, stability and so forth were tested. The test results indicated that this tire system is practical enough.
Technical Paper

Analysis of Steering Force at Low Speed

1979-02-01
790739
From the view point of vehicle weight reduction and saving resources, it would be desirable to decrease the steering effort eliminating the assistance of power. Therefore, we have analyzed the steering effort at low vehicle speeds where steering effort is great, and have introduced a theoretical model based on the contact surface deflection recovering process of rolling tires. This deflection comes from the lateral rigidity and the total deflection of tires. The following results were obtained from this study. As the vehicle speed increases, the steering effort decreases exponentially. As the steering speed increases or as the vehicle speed decreases, the steering effort increases and the effort approaches the final value which equals the static steering effort. The static steering effort is not relative to steering speed. These theoretical results are supported by vehicle experiments.
Technical Paper

Analysis of Disc Brake Squeal, 1992

1992-02-01
920553
Eliminating squeal noise generated during braking is an important task for the improvement of vehicle passengers' comfort. Considerable amount of research and development works have been done on the problem to date. In this study, we focused on the analyses of friction self-excited vibration and brake part resonance during high frequency brake squeal. Friction self-excited vibration is caused by the dry friction between pads and rotor, and occurs as a function of their relative sliding velocities. Its vibration frequency can be calculated in relation to the mass and stiffness of the pad sliding surface. Frequency responses of the brake assembly were measured and the vibration modes of the pad, disc and caliper during squeal were identified through modal analysis. Further study led to the development of a computer simulation method for analyzing the vibration modes of brake parts. Analytical results obtained using the method agreed well with the corresponding experimental data.
Technical Paper

Improvement of Vehicle Dynamics Through Braking Force Distribution Control

1992-02-01
920645
The influence on vehicle dynamics of braking force distribution to four wheels has been analyzed by computer simulation and experimentation. The analytical results indicate that a suitable braking force distribution control method can improve handling and stability during braking. A new braking force distribution cintrol strategy,using a steering wheel angle feedforward function and a yaw velocity feedback function,is shown to improve vehicle dynamic behavior.
Technical Paper

Dynamic Characteristics Analysis of Brake Pipings

1991-01-01
910022
A new analysis procedure have been developed that evaluate a brake system performance based on analyses of the transient characteristics and frequency characteritics in the brake piping. Using this procedure, analyses were made of the effect of ABS operation on brake pressure changes and of the influence of the orifice on the pressure transmission characteristics. As an example of a frequency analysis, the pressure transmission characteristics were analyzed when pulse pressure occured in the brake piping as a result of variation in the wall thickness of the brake rotors. This paper presents the results of these analyses and shows the validity of the new procedure through a comparison with experimental data.
Technical Paper

Development of a Ball Bearing Turbocharger

1990-02-01
900125
Nissan has added ball bearings to its “High-flow Ceramic Turbocharger”(1) (introduced in 1987) to improve acceleration response by reducing friction loss. The following programs were carried out in applying ball bearings to the turbocharger: Optimum bearing size and material were selected to assure long life; lubrication techniques were employed to achieve compatibility between acceleration response and durability; a thrust support system was designed to assure that the ball bearings endure thrust load which varies in direction and magnitude during engine operation; and the squeeze film damper was optimized to keep the turbocharger silent. These innovations have resulted in a practical ball-bearing turbocharger, which has been installed in Nissan's most recent Skyline model(released in May 1989). This is the first time a ball-bearing turbocharger has been applied to a passenger car.
Technical Paper

A New System for Independently Controlling Braking Force Between Inner and Outer Rear Wheels

1989-02-01
890835
This paper presents a new system for controlling the braking force between the inner and outer wheels in a turn independently. Vehicle cornering performance has improved noticeably in recent years thanks to advances achieved in tire and suspension technology. Due to this improvement, vehicle handling characteristics during braking have taken on added importance. To achieve stabler handling properties during braking in a turn, a new evaluation method is being used at Nissan to analyze vehicle directional stability. The analytical results show that decreasing the yaw moment before wheel locking occurs is effective in achieving stabler handling. An effective approach to decreasing the yaw moment is to control the braking force between the inner and outer wheels independently. Base on these analytical results and experimental data obtained with actual vehicles, a new system has been developed that provides such independent control over the braking force.
X