Refine Your Search

Topic

Author

Search Results

Technical Paper

Prediction of Crank Pin Journal Temperature Based on the Oil Flow Rate

1998-05-04
981403
Improving the durability and reliability of crankshaft bearings has become an important issue for automotive engines recently because of conflicting demands for lower fuel consumption and higher power output. This study focused on the connecting rod big-end bearing which is subjected to harsher operating conditions on account of these requirements. It is known that the crank pin journal temperature is an indicator of big-end bearing seizure. Having a simple method for predicting the crank pin journal temperature with the required accuracy at the design stage is indispensable to efficient engine development. In this study, analyses were first conducted to determine the oil flow rate at the big-end bearing which is a major determinant of the crank pin journal temperature.
Technical Paper

Development of a High-Pressure Fueling System for a Direct-Injection Gasoline Engine

1998-05-04
981458
A direct-injection gasoline engine that uses a stratified charge combustion process was developed by Nissan and released in the Japanese market toward the end of 1997. This new engine is based on Nissan's VQ engine, which enjoys a good reputation for its quick throttle response and low fuel consumption, and has been developed to accomplish the objectives of reducing fuel consumption by stratified charge combustion and securing high power output. The fuel injectors are connected by an arrangement of lightweight, small-diameter fuel lines that distribute fuel to each injector under high pressure. This system was adopted in order to reconcile the use of an aerodynamic straight intake port with the desired fuel injection position. The use of a casting net injector, which uniformly distributes the fuel spray above the piston, makes it possible to accomplish stratified charge combustion with a shallow-bowl piston.
Technical Paper

Mixture Formation and Combustion Performance in a New Direct-Injection SI V-6 Engine

1998-05-04
981435
One advantage of a direct-injection S.I. engine is lower fuel consumption due to the use of lean stratified charge combustion. Another advantage is greater power output resulting from evaporation of the fuel in the cylinder. A critical factor in making the most of these advantages is to achieve optimum mixture formation for both stratified and homogeneous charge combustion. To achieve the optimum mixture, the new direct-injection S.I. V-6 engine adopts a piston with a shallow bowl, a valve that changes in-cylinder air motion between swirl and tumble by opening and closing one side of separated air intake port, an air intake port that has optimized inward and port angle to induces swirl in the piston bowl, and a CASTING NET injector that injects the hollow cone spray in a deflected pattern toward the spark plug.
Technical Paper

Development of a Metal Belt-Drive CVT Incorporating a Torque Converter for Use with 2-Liter Class Engines

1998-02-23
980823
Technologies for reducing fuel consumption have attracted strong interest in recent years amid the heightened concern about global environmental protection. At Nissan, we have been focusing on the development of electronically controlled continuously variable transmissions (CVTs) since the early 1980s as a promising technology for reducing fuel consumption. That work has led to the commercialization of the world's first belt-drive CVT that is suitable for application up to 2.0-liter class passenger cars. The practical use of CVTs has so far been limited to cars mounted with small displacement engines of the 1.6-liter class. The belt-drive CVT described here incorporates new technology for transmitting greater torque and also has product attributes suitable for use on upscale passenger cars, making it applicable to 2.0-liter class models.
Technical Paper

Simultaneous Attainment of Low Fuel Consumption High Output Power and Low Exhaust Emissions in Direct Injection SI Engines

1998-02-01
980149
This paper describes simultaneous attainment in improving fuel consumption, output power and reducing HC emissions with a direct injection S.I. engine newly developed in Nissan. Straight intake port is adopted to increase discharge coefficient under WOT operation and horizontal swirl flow is generated by a swirl control valve to provide stable stratified charge combustion under part load conditions. As a result, fuel consumption is reduced by more than 20% and power output is improved by approximately 10%. Moreover, unburned HC is reduced by equivalently 30% in engine cold start condition. An application of diagnostic and numerical simulation tools to investigate and optimize various factors are also introduced.
Technical Paper

Improvement of Performance and Reliability of Engine Electronic Controller

1988-02-01
880181
Need for electronic engine control has increased, because of high power output, high performance and the demands for drivability and low fuel consumption. As the control system has become sophisticated and important, the reliabilty has become very important, too. Nissan Motor Company has introduced a high-reliability and high-performance system which meets the current customer's demand, adopting new technology and new method for items such as circuit composition, electronic parts, print circuit board layout, parts instsllation, control specification of engine electronic control system (ECCS). The new content and the effect of new technology and method are described.
Technical Paper

MBT Control through Individual Cylinder Pressure Detection

1988-11-01
881779
Making use of spark-plug-washer type cylinder pressure sensors and a high-performance 16-bit microprocessor, the authors have developed a new control system (Nissan ECCS) of ignition timing for gasoline engine. Use of this system results in effective control, enabling each engine to deliver maximum torque and minimum fuel consumption at all conditions, regardless of changes in environmental conditions, etc.
Technical Paper

Potentiality of the Modification of Engine Combustion Rate for NOx Formation Control in the Premixed SI Engine

1975-02-01
750353
In order to study the potentiality of the modification of the combustion rate for NOx formation control in the spark ignition (SI) engine, the authors first developed a new mathematical model by assuming the stepped gas temperature gradient in the cylinder. The predicted results from this new mathematical model show good coincidence with the experimental data. Second, the authors discuss the effects of the modification of the combustion rate on NOx formation using the new mathematical model. It was concluded that NOx formation in the premixed SI engine would be essentially determined by the specific fuel consumption only, regardless of any modification of the engine combustion rate.
Technical Paper

Technological Trends in Automotive Electronics

1987-11-08
871285
Although automotive electronics was initially applied as a substitute for mechanical parts, this technology has the potential to achieve effective combinations of mechanical functions. A case in point is the successful resolution of fuel consumption and exhaust emission problems by effectively integrating engine control and catalyst technologies. LSI technology has also been incorporated into automotive electronics and established as a fundamental engine control tool. Thanks to LSI technology, particularly the use of microprocessor techniques, conventional machine design problems have been transformed into logical design ones. In the next stage of application, automotive electronics is expected to provide further benefits including a more comfortable ride, an improved human-machine system interface, and an advanced communications system between vehicles and other telecommunications stations.
Technical Paper

Real World Performance of an Onboard Gasoline/Ethanol Separation System to Enable Knock Suppression Using an Octane-On-Demand Fuel System

2018-04-03
2018-01-0879
Higher compression ratio and turbocharging, with engine downsizing can enable significant gains in fuel economy but require engine operating conditions that cause engine knock under high load. Engine knock can be avoided by supplying higher-octane fuel under such high load conditions. This study builds on previous MIT papers investigating Octane-On-Demand (OOD) to enable a higher efficiency, higher-boost higher compression-ratio engine. The high-octane fuel for OOD can be obtained through On-Board-Separation (OBS) of alcohol blended gasoline. Fuel from the primary fuel tank filled with commercially available gasoline that contains 10% by volume ethanol (E10) is separated by an organic membrane pervaporation process that produces a 30 to 90% ethanol fuel blend for use when high octane is needed. In addition to previous work, this paper combines modeling of the OBS system with passenger car and medium-duty truck fuel consumption and octane requirements for various driving cycles.
Technical Paper

Potentiality of Small DI Diesel Engines Under Consideration of Emissions and Noise Control

1985-06-01
851213
The potentiality of direct injection (DI) diesel engines for passenger cars has been examined by comparing the characteristics of fuel consumption, exhaust emissions and noize levels between a turbocharged DI diesel engine and a turbocharged IDI diesel engine with the same displacement, 4 cylinders and 2 liters. It was observed that improved fuel consumption was obtained as the engine load increased, namely, 10 - 15% in the higher load range and 5 - 10% in the partial load range. In comparison to the IDI engine, the exhaust emissions of the DI engine tended to contain two or three times higher NOx and HC, and also about 30% higher particulates. Further, the noise levels of the DI engine were approximately 2 - 4 dB (A) higher than those of the IDI engine.
Technical Paper

Impact Study of High Biodiesel Blends on Exhaust Emissions to Advanced Aftertreatment Systems

2010-04-12
2010-01-1292
In Biodiesel Fuel Research Working Group(WG) of Japan Auto-Oil Program(JATOP), some impacts of high biodiesel blends have been investigated from the viewpoints of fuel properties, stability, emissions, exhaust aftertreatment systems, cold driveability, mixing in engine oils, durability/reliability and so on. In the impact on exhaust emissions, the impact of high biodiesel blends into diesel fuel on diesel emissions was evaluated. The wide variety of biodiesel blendstock, which included not only some kinds of fatty acid methyl esters(FAME) but also hydrofined biodiesel(HBD) and Fischer-Tropsch diesel fuel(FTD), were selected to evaluate. The main blend level evaluated was 5, 10 and 20% and the higher blend level over 20% was also evaluated in some tests. The main advanced technologies for exhaust aftertreatment systems were diesel particulate filter(DPF), Urea selective catalytic reduction (Urea-SCR) and the combination of DPF and NOx storage reduction catalyst(NSR).
Technical Paper

A New Quasi-Dimensional Combustion Model Applicable to Direct Injection Gasoline Engine

2010-04-12
2010-01-0544
Gasoline engines employ various mechanisms for improvement of fuel consumption and reduction of exhaust emissions to deal with environmental problems. Direct fuel injection is one such technology. This paper presents a new quasi-dimensional combustion model applicable to direct injection gasoline engine. The Model consists of author's original in-cylinder turbulence and mixture homogeneity sub model suitable for direct fuel injection conditions. Model validation results exhibit good agreement with experimental and 3D CFD data at steady state and transient operating conditions.
Technical Paper

Development of New 1.6Liter Four Cylinder Turbocharged Direct Injection Gasoline Engine with Intake and Exhaust Valve Timing Control System

2011-04-12
2011-01-0419
This paper describes a new 1.6-liter four-cylinder gasoline turbocharged engine with a direct injection gasoline (DIG) system and a twin continuously variable valve timing control (CVTC) system. Demands for higher environmental performance make it necessary to improve engine efficiency further. At the same time, improvement of power performance is important to enhance the appeal of vehicles and make them attractive to consumers. In order to meet these requirements, a 1.6-liter direct injection gasoline turbocharged engine has been developed. By using many friction reduction technologys, this engine achieves the high power performance of a 2.5-liter NA(Naturally Aspirated) gasoline engine and low fuel consumption comparable to that of a smaller displacement engine. In addition, this engine achieves low exhaust emission performance to comply with the US LEV2-ULEV and EU Euro5 emission requirements.
Technical Paper

Modeling of the Rotary Engine Apex Seal Lubrication

2015-09-01
2015-01-2035
The Wankel rotary engine is more compact than conventional piston engines, but its oil and fuel consumption must be reduced to satisfy emission standards and customer expectations. A key step toward this goal is to develop a better understanding of the apex seal lubrication to reduce oil injection while reducing friction and maintaining adequate wear. This paper presents an apex seal dynamics model capable of estimating relative wear and predicting friction, by modeling the gas and oil flows at the seal interfaces with the rotor housing and groove flanks. Model predictions show that a thin oil film can reduce wear and friction, but to a limited extent as the apex seal running face profile is sharp due to the engine kinematics.
Technical Paper

Improvement of Practical Electric Consumption by Drag Reducing under Cross Wind

2016-04-05
2016-01-1626
Reducing vehicle fuel consumption has become one of the most important issues in recent years in connection with environmental concerns such as global warming. Therefore, in the vehicle development process, attention has been focused on reducing aerodynamic drag as a way of improving fuel economy. When considering environmental issues, the development of vehicle aerodynamics must take into account real-world driving conditions. A crosswind is one of the representative conditions. It is well known that drag changes in a crosswind compared with a condition without a crosswind, and that the change depends on the vehicle shape. It is generally considered that the influence of a crosswind is relatively small since drag accounts for a small proportion of the total running resistance. However, for electric vehicles, the energy loss of the drive train is smaller than that of an internal combustion engine (ICE) vehicle.
Technical Paper

Particulate Filter Soot Load Measurements using Radio Frequency Sensors and Potential for Improved Filter Management

2016-04-05
2016-01-0943
Efficient aftertreatment management requires accurate sensing of both particulate filter soot and ash levels for optimized feedback control. Currently a combination of pressure drop measurements and predictive models are used to indirectly estimate the loading state of the filter. Accurate determination of filter soot loading levels is challenging under certain operating conditions, particularly following partial regeneration events and at low flow rate (idle) conditions. This work applied radio frequency (RF)-based sensors to provide a direct measure of the particulate filter soot levels in situ. Direct measurements of the filter loading state enable advanced feedback controls to optimize the combined engine and aftertreatment system for improved DPF management. This study instrumented several cordierite and aluminum titanate diesel particulate filters with RF sensors. The systems were tested on a range of light- and heavy-duty applications, which included on- and off-road engines.
Technical Paper

A Study of Heat Rejection and Combustion Characteristics of a Low-temperature and Pre-mixed Combustion Concept Based on Measurement of Instantaneous Heat Flux in a Direct-Injection Diesel Engine

2000-10-16
2000-01-2792
There have been strong demands recently for reductions in the fuel consumption and exhaust emissions of diesel engines from the standpoints of conserving energy and curbing global warming. A great deal of research is being done on new emission control technologies using direct-injection (DI) diesel engines that provide high thermal efficiency. This work includes dramatic improvements in the combustion process. The authors have developed a new combustion concept called Modulated Kinetics (MK), which reduces smoke and NOx levels simultaneously by reconciling low-temperature combustion with pre-mixed combustion [1, 2]. At present, research is under way on the second generation of MK combustion with the aim of improving emission performance further and achieving higher thermal efficiency [3]. Reducing heat rejection in the combustion chamber is effective in improving the thermal efficiency of DI diesel engines as well as that of MK combustion.
Technical Paper

Comparative Analysis of Automotive Powertrain Choices for the Next 25 Years

2007-04-16
2007-01-1605
This paper assesses the potential improvement of automotive powertrain technologies 25 years into the future. The powertrain types assessed include naturally-aspirated gasoline engines, turbocharged gasoline engines, diesel engines, gasoline-electric hybrids, and various advanced transmissions. Advancements in aerodynamics, vehicle weight reduction and tire rolling friction are also taken into account. The objective of the comparison is the potential of anticipated improvements in these powertrain technologies for reducing petroleum consumption and greenhouse gas emissions at the same level of performance as current vehicles in the U.S.A. The fuel consumption and performance of future vehicles was estimated using a combination of scaling laws and detailed vehicle simulations. The results indicate that there is significant potential for reduction of fuel consumption for all the powertrains examined.
Technical Paper

The Effect of a Longer Stroke on Improving Fuel Economy of a Multiple-Link VCR Engine

2007-10-29
2007-01-4004
Some automakers have been studying variable compression ratio (VCR) technology as one possible way of improving fuel economy. In previous studies, we have developed a VCR mechanism of a unique multiple-link configuration that achieves a piston stroke characterized by semi-sinusoidal oscillation and lower piston acceleration at top dead center than on conventional mechanisms. By controlling compression ratio with this multiple-link VCR mechanism so that it optimally matches any operating condition, the mechanism has demonstrated that both lower fuel consumption and higher output power are simultaneously possible. However, it has also been observed that fuel consumption does not reduce further once the compression ratio reached a certain level. This study focused on the fact that the piston-stroke characteristic obtained with the multiple-link mechanism is suitable to a longer stroke.
X